PROOF OF FORMULA 3.522.3

$$
\int_{0}^{\infty} \frac{d x}{\left(b^{2}+x^{2}\right) \cosh a x}=\frac{2 \pi}{b} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2 a b+(2 k-1) \pi}
$$

The change of variables $x=b t$ shows that is suffices to assume $b=1$. Extend the integrand f to the whole real line using its symmetry. The integrand has poles in the upper half plane at $z=i$ and $z=\frac{(2 k+1) \pi i}{2 a}, k \geq 0$. Assume first that the poles are simple.

Integrate over a semi-circle centered at the origin and radius R. The residues are

$$
\begin{aligned}
\operatorname{Res}(f ; i) & =\frac{1}{2 i \cosh (i a)}=\frac{1}{2 i \cos a} \\
\operatorname{Res}\left(f ; \frac{(2 k-1) \pi i}{2 a}\right) & =\frac{(-1)^{k-1} 4 i a}{4 a^{2}-\pi^{2}(2 k-1)^{2}}
\end{aligned}
$$

The residue theorem and a partial fraction decomposition give the stated value of the integral.

