PROOF OF FORMULA 3.527 .8

$$
\int_{0}^{\infty} \frac{x^{2 m+1} \sinh a x}{\cosh ^{2} a x} d x=\frac{2 m+1}{a}\left(\frac{\pi}{2 a}\right)^{2 m+1}\left|E_{2 m}\right|
$$

Entry $\mathbf{3 . 5 2 7 . 6}$ states that

$$
\int_{0}^{\infty} \frac{x^{\mu-1} \sinh a x}{\cosh ^{2} a x} d x=\frac{2 \Gamma(\mu)}{a^{\mu}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{\mu-1}}
$$

The result follows by putting $\mu=2 m+2$ and the formula

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2 m+1}}=\frac{\pi^{2 m+1}\left|E_{2 m}\right|}{(2 m)!2^{2 m+2}}
$$

Here E_{m} is the Euler number.

