PROOF OF FORMULA 3.541.4

$$
\int_{0}^{\infty} e^{-x} \frac{\sinh a x}{\sinh x} d x=\frac{1}{a}-\frac{\pi}{2} \cot \left(\frac{\pi a}{2}\right)
$$

This is the special case $\mu=1, \beta=a, b=1$ of entry $\mathbf{3 . 5 4 1 . 2}$ that gives the evaluation

$$
\int_{0}^{\infty} e^{-x} \frac{\sinh a x}{\sinh x} d x=\frac{1}{2}\left[\psi\left(1+\frac{a}{2}\right)-\psi\left(1-\frac{a}{2}\right)\right] .
$$

This expression can be reduced to the stated one by employing

$$
\psi(x+1)=\psi(x)+\frac{1}{x}
$$

and

$$
\psi(1-x)=\psi(x)+\pi \cot \pi x
$$

