PROOF OF FORMULA 3.621.1

$$
\int_{0}^{\pi / 2} \sin ^{\mu-1} x d x=\int_{0}^{\pi / 2} \cos ^{\mu-1} x d x=2^{\mu-2} B\left(\frac{\mu}{2}, \frac{\mu}{2}\right)
$$

In the integral representation

$$
B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t
$$

let $t=\sin ^{2} x$ to obtain

$$
B(a, b)=2 \int_{0}^{\pi / 2} \sin ^{2 a-1} x \cos ^{2 b-1} x d x
$$

Now let $a=\mu / 2$ and $b=1 / 2$ to obtain

$$
\int_{0}^{\pi / 2} \sin ^{\mu-1} x d x=\frac{1}{2} B\left(\frac{\mu}{2}, \frac{1}{2}\right)
$$

The duplication formula of the gamma function

$$
2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right)=\sqrt{\pi} \Gamma(2 z)
$$

can be written as

$$
B\left(z, \frac{1}{2}\right)=2^{2 z-1} B(z, z)
$$

This gives the stated form.

