PROOF OF FORMULA 3.621.5

$$
\int_{0}^{\pi / 2} \sin ^{\mu-1} x \cos ^{\nu-1} x d x=\frac{1}{2} B\left(\frac{\mu}{2}, \frac{\nu}{2}\right)
$$

In the integral representation

$$
B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t
$$

let $t=\sin ^{2} x$ to obtain

$$
B(a, b)=2 \int_{0}^{\pi / 2} \sin ^{2 a-1} x \cos ^{2 b-1} x d x
$$

The result follows by letting $\mu=2 a$ and $\nu=2 b$.

