PROOF OF FORMULA 3.622 .3

$$
\int_{0}^{\pi / 4} \tan ^{2 n} x d x=(-1)^{n} \frac{\pi}{4}+\sum_{k=0}^{n-1} \frac{(-1)^{k}}{2 n-2 k-1}
$$

Let

$$
I_{n}=\int_{0}^{\pi / 4} \tan ^{2 n} x d x
$$

Then

$$
\begin{aligned}
I_{n} & =\int_{0}^{\pi / 4} \tan ^{2 n} x d x=\int_{0}^{\pi / 4} \tan ^{2 n-2} x\left(\sec ^{2} x-1\right) d x \\
& =-I_{n-1}+\frac{1}{2 n-1}
\end{aligned}
$$

Therefore,

$$
I_{n}+I_{n-1}=\frac{1}{2 n-1},
$$

and $I_{0}=\frac{\pi}{4}$. The formula can now be checked directly by induction.
Note. The evaluation should be written as

$$
\int_{0}^{\pi / 4} \tan ^{2 n} x d x=(-1)^{n}\left(\frac{\pi}{4}-\sum_{k=0}^{n-1} \frac{(-1)^{k}}{2 k+1}\right)
$$

