PROOF OF FORMULA 3.624.1

$$
\int_{0}^{\pi / 4} \frac{\sin ^{p} x d x}{\cos ^{p+2} x}=\frac{1}{p+1}
$$

Start with

$$
\begin{aligned}
\int_{0}^{\pi / 4} \frac{\sin ^{p} x d x}{\cos ^{p+2} x} & =\int_{0}^{\pi / 4} \tan ^{p} x \sec ^{2} d x \\
& =\int_{0}^{\pi / 4} \tan ^{p+2} x d x+\int_{0}^{\pi / 4} \tan ^{p} x d x
\end{aligned}
$$

Formula $\mathbf{3 . 6 2 2 . 2}$ shows that

$$
\int_{0}^{\pi / 4} \tan ^{a} x d x=\frac{1}{2} \beta\left(\frac{a+1}{2}\right),
$$

therefore

$$
\int_{0}^{\pi / 4} \frac{\sin ^{p} x d x}{\cos ^{p+2} x}=\frac{1}{2} \beta\left(\frac{p+3}{2}\right)+\frac{1}{2} \beta\left(\frac{p+1}{2}\right) .
$$

The identity

$$
\beta(a)+\beta(a+1)=\frac{1}{a}
$$

that follows directly from

$$
\beta(a)=\frac{1}{2}\left[\psi\left(\frac{a+1}{2}\right)-\psi\left(\frac{a}{2}\right)\right],
$$

gives the result.

