PROOF OF FORMULA 3.624.3

$$
\int_{0}^{\pi / 4} \frac{\cos ^{n-1 / 2}(2 x)}{(\cos x)^{2 n+1}} d x=\frac{(2 n-1)!!}{2(2 n)!!} \pi
$$

This is the special case $\mu=n-\frac{1}{2}$ in entry $\mathbf{3 . 6 2 4 . 4}$ which states that

$$
\int_{0}^{\pi / 4} \frac{\cos ^{\mu}(2 x)}{(\cos x)^{2(\mu+1)}} d x=2^{2 \mu} B(\mu+1, \mu+1)
$$

The expression

$$
\Gamma\left(n+\frac{1}{2}\right)=\frac{\sqrt{\pi}(2 n)!!}{2^{2 n} n!}
$$

is useful in the simplification.

