PROOF OF FORMULA 3.625.4

$$
\int_{0}^{\pi / 4} \frac{\sin ^{2 n} x \cos ^{m-1 / 2} 2 x}{\cos ^{2 n+2 m+1} x} d x=\frac{(2 n-1)!!(2 m-1)!!}{(2 n+2 m)!!} \frac{\pi}{2}
$$

The change of variable $t=\tan x$ gives

$$
\int_{0}^{\pi / 4} \frac{\sin ^{2 n} x \cos ^{m-1 / 2} 2 x}{\cos ^{2 n+2 m+1} x} d x=\int_{0}^{1} t^{2 n}\left(1-t^{2}\right)^{m-1 / 2} d t .
$$

Now let $v=t^{2}$ and use the integral representation of the beta function

$$
B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t
$$

to obtain

$$
\int_{0}^{\pi / 4} \frac{\sin ^{2 n} x \cos ^{m-1 / 2} 2 x}{\cos ^{2 n+2 m+1} x} d x=\frac{1}{2} B\left(n+\frac{1}{2}, m+\frac{1}{2}\right) .
$$

This is now reduced to the stated formula using

$$
\Gamma\left(p+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{p}}(2 p-1)!!.
$$

