PROOF OF FORMULA 3.636.1

$$
\int_{0}^{\pi / 2}(\tan x)^{ \pm \mu} \sin 2 x d x=\frac{\pi \mu}{2} \operatorname{cosec} \frac{\pi \mu}{2}
$$

Write the integral as

$$
\int_{0}^{\pi / 2}(\tan x)^{ \pm \mu} \sin 2 x d x=2 \int_{0}^{\pi / 2}(\sin x)^{ \pm \mu+1}(\cos x)^{\mp \mu+1} d x
$$

The integral representation

$$
B(a, b)=2 \int_{0}^{\pi / 2}(\sin x)^{2 a-1}(\cos x)^{2 b-1} d x
$$

shows that

$$
\int_{0}^{\pi / 2}(\tan x)^{ \pm \mu} \sin 2 x d x=B\left(1 \pm \frac{\mu}{2}, 1 \mp \frac{\mu}{2}\right)
$$

and this reduces to the stated answer.

