PROOF OF FORMULA 3.662.3

$$
\int_{0}^{\pi / 2}(\sec x-1)^{\mu} \tan x d x=\int_{0}^{\pi / 2}(\csc x-1)^{\mu} \cot x d x=-\frac{\pi}{\sin \pi \mu}
$$

The first integral is

$$
\int_{0}^{\pi / 2}(\sec x-1)^{\mu} \tan x d x=\int_{0}^{\pi / 2} \cos ^{-1-\mu} x(1-\cos x)^{\mu} \sin x d x
$$

The change of variables $t=\cos x$ gives

$$
\int_{0}^{\pi / 2}(\sec x-1)^{\mu} \tan x d x=\int_{0}^{1} t^{-1-\mu}(1-t)^{\mu} d t
$$

This is evaluated as

$$
B(-\mu, 1+\mu)=\Gamma(-\mu) \Gamma(1-\mu)=-\frac{\pi}{\sin \pi \mu}
$$

as claimed. The second integral comes from the change of variable $x \mapsto \frac{\pi}{2}-x$.

