PROOF OF FORMULA 3.791.1

$$
\int_{0}^{\pi / 2} \frac{x d x}{1+\sin x}=\ln 2
$$

Let $t=\pi / 2-x$ to produce

$$
\begin{aligned}
\int_{0}^{\pi / 2} \frac{x d x}{1+\sin x} & =\int_{0}^{\pi / 2} \frac{(\pi / 2-t) d t}{1+\cos t} \\
& =2 \int_{0}^{\pi / 4} \frac{\pi / 4-s}{\cos ^{2} s} d s
\end{aligned}
$$

Integrate by parts to obtain

$$
\int_{0}^{\pi / 2} \frac{x d x}{1+\sin x}=2 \int_{0}^{\pi / 4} \tan s d s
$$

where $t=2 \mathrm{~s}$. This gives the result.

