
PROOF OF FORMULA 4.227.4
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|En| if n is even

Let v = − ln tanx to obtain∫ π/4

0

lnn tanx dx = (−1)n
∫ ∞
0
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dv.

Expand the integrand in a geometric series to obtain∫ π/4

0
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k=0
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The change of variables t = (2k + 1)v gives the result for general n.

In the case n even use the formula
∞∑
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to obtain the expression in terms of the Euler numbers.
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