PROOF OF FORMULA 4.227.4

$$
\begin{aligned}
\int_{0}^{\pi / 4} \ln ^{n} \tan x d x & =(-1)^{n} n!\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{n+1}} \\
& =\frac{1}{2}\left(\frac{\pi}{2}\right)^{n+1}\left|E_{n}\right| \text { if } n \text { is even }
\end{aligned}
$$

Let $v=-\ln \tan x$ to obtain

$$
\int_{0}^{\pi / 4} \ln ^{n} \tan x d x=(-1)^{n} \int_{0}^{\infty} \frac{v^{n} e^{-v}}{1+e^{-2 v}} d v
$$

Expand the integrand in a geometric series to obtain

$$
\int_{0}^{\pi / 4} \ln ^{n} \tan x d x=(-1)^{n} \sum_{k=0}^{\infty}(-1)^{k} \int_{0}^{\infty} v^{n} e^{-(2 k+1) v} d v
$$

The change of variables $t=(2 k+1) v$ gives the result for general n.
In the case n even use the formula

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2 m+1}}=\frac{\pi^{2 m+1}\left|E_{2 m}\right|}{(2 m)!2^{2 m+2}}
$$

to obtain the expression in terms of the Euler numbers.

