PROOF OF FORMULA 4.231.11

$$
\int_{0}^{a} \frac{\ln x d x}{x^{2}+a^{2}}=\frac{\pi \ln a}{4 a}-\frac{G}{a}
$$

Let $x=a t$ to obtain

$$
\int_{0}^{a} \frac{\ln x d x}{x^{2}+a^{2}}=\frac{\ln a}{a} \int_{0}^{1} \frac{d t}{1+t^{2}}+\frac{1}{a} \int_{0}^{1} \frac{\ln t d t}{1+t^{2}}
$$

The first integral is $\pi / 4$ and the second one is $-G$ as computed in 4.231.12

