PROOF OF FORMULA 4.231 .15

$$
\int_{0}^{1} \frac{x \ln x}{1-x^{2}} d x=-\frac{\pi^{2}}{24}
$$

Let $t=x^{2}$. Then

$$
\int_{0}^{1} \frac{x \ln x}{1-x^{2}} d x=\frac{1}{4} \int_{0}^{1} \frac{\ln t}{1-t} d t
$$

The second integral is evaluated as $-\pi^{2} / 6$ in 4.231 .2

