PROOF OF FORMULA 4.257.2

$$
\int_{0}^{\infty}\left(\frac{x^{p}}{q^{2 p}+x^{2 p}}\right) \ln \frac{x}{q} \frac{d x}{x}=0
$$

Let $x=q t$ to obtain

$$
\int_{0}^{\infty}\left(\frac{x^{p}}{q^{2 p}+x^{2 p}}\right) \ln \frac{x}{q} \frac{d x}{x}=\frac{1}{q^{p}} \int_{0}^{\infty} \frac{t^{p}}{1+t^{2 p}} \frac{\ln t}{t} d t
$$

Split the integral into $[0,1]$ and $[1, \infty)$. In the second interval let $s=1 / t$ and check that its value is minus the integral over $[0,1]$. Thus the total integral vanishes.

