PROOF OF FORMULA 4.262 .9

$$
\int_{0}^{1} \frac{1-x^{2 n+2}}{\left(1-x^{2}\right)^{2}} \ln ^{3} x d x=-\frac{(n+1) \pi^{4}}{16}+6 \sum_{k=1}^{n} \frac{n-k+1}{(2 k-1)^{4}}
$$

The expansion

$$
\frac{1}{\left(1-x^{2}\right)^{2}}=\sum_{j=1}^{\infty} j x^{2 j-2}
$$

comes by elementary manipulation of the geometric series. Thus

$$
\begin{aligned}
\frac{1-x^{2 n+2}}{\left(1-x^{2}\right)^{2}} & =\sum_{j=1}^{\infty} j x^{2 j-2}-\sum_{j=1}^{\infty} j x^{2 j+2 n} \\
& =\sum_{j=1}^{n+1} j x^{2 j-2}-(n+1) \sum_{j=n+2}^{\infty} x^{2 j-2}
\end{aligned}
$$

Therefore
$\int_{0}^{1} \frac{1-x^{2 n+2}}{\left(1-x^{2}\right)^{2}} \ln ^{3} x d x=\sum_{j=1}^{n+1} j \int_{0}^{1} x^{2 j-2} \ln ^{3} x d x-(n+1) \sum_{j=n+2}^{\infty} \int_{0}^{1} x^{2 j-2} \ln ^{3} x d x$
Now use

$$
\int_{0}^{1} x^{a} \ln ^{3} x d x=-\frac{6}{(a+1)^{4}}
$$

and

$$
\sum_{j=1}^{\infty} \frac{1}{(2 j-1)^{4}}=-\frac{3 \pi^{4}}{8}
$$

to obtain the result.

