PROOF OF FORMULA 4.267.1

$$
\int_{0}^{1} \frac{1-x}{1+x} \frac{d x}{\ln x}=\ln \frac{2}{\pi}
$$

The change of variable $t=-\ln x$ yields

$$
\int_{0}^{1} \frac{1-x}{1+x} \frac{d x}{\ln x}=-\int_{0}^{\infty} \frac{e^{-t}-e^{-2 t}}{1+e^{-t}} \frac{d t}{t}
$$

This is a special case of entry $\mathbf{3 . 4 1 1 . 2 8}$ with $\nu=1$ and $\mu=2$. The results follows from there.

