PROOF OF FORMULA 4.267 .10

$$
\int_{0}^{1} \frac{x^{p-1}-x^{-p}}{(1+x) \ln x} d x=\frac{1}{2} \int_{0}^{\infty} \frac{x^{p-1}-x^{-p}}{(1+x) \ln x} d x=\ln \left(\tan \frac{\pi p}{2}\right)
$$

To prove the identity of the two integrals split the second one over $[0,1]$ and $[1, \infty)$ and let $x \mapsto 1 / x$ in the second part.

The evaluation of the integral is done using entry 4.267 .9 with $q=1-p$.

