PROOF OF FORMULA 4.267.10

$$\int_0^1 \frac{x^{p-1} - x^{-p}}{(1+x)\ln x} \, dx = \frac{1}{2} \int_0^\infty \frac{x^{p-1} - x^{-p}}{(1+x)\ln x} \, dx = \ln\left(\tan\frac{\pi p}{2}\right)$$

To prove the identity of the two integrals split the second one over [0, 1] and $[1, \infty)$ and let $x \mapsto 1/x$ in the second part.

The evaluation of the integral is done using entry **4.267.9** with q = 1 - p.