
PROOF OF FORMULA 4.267.6
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Expanding the power it follows that∫ 1
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To evaluate the remaining integral, start from∫ 1
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and integrate with respect to a from a = 0 to a = k. It follows that∫ 1
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The result now follows from the vanishing of the second sum: it is (1−x)p evaluated
at x = 1. The integral of 1/ lnx diverges only logarithmically.
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