PROOF OF FORMULA 4.267.6

$$
\int_{0}^{1} \frac{(1-x)^{p}}{\ln x} d x=\sum_{k=1}^{\infty}(-1)^{k}\binom{p}{k} \ln (1+k)
$$

Expanding the power it follows that

$$
\int_{0}^{1} \frac{(1-x)^{p}}{\ln x} d x=\sum_{k=0}^{\infty}(-1)^{k}\binom{p}{k} \int_{0}^{1} \frac{x^{k} d x}{\ln x}
$$

To evaluate the remaining integral, start from

$$
\int_{0}^{1} x^{a} d x=\frac{1}{1+a}
$$

and integrate with respect to a from $a=0$ to $a=k$. It follows that

$$
\int_{0}^{1} \frac{x^{k}-1}{\ln x} d x=\ln (1+k)
$$

Therefore

$$
\int_{0}^{1} \frac{(1-x)^{p}}{\ln x} d x=\sum_{k=0}^{\infty}(-1)^{k}\binom{p}{k} \int_{0}^{1} \frac{x^{k}-1}{\ln x} d x+\sum_{k=0}^{\infty}(-1)^{k}\binom{p}{k} \int_{0}^{1} \frac{d x}{\ln x}
$$

The result now follows from the vanishing of the second sum: it is $(1-x)^{p}$ evaluated at $x=1$. The integral of $1 / \ln x$ diverges only logarithmically.

