PROOF OF FORMULA 4.271.10

$$
\int_{0}^{1} \frac{\ln ^{2 n-1} x d x}{1-x^{2}}=\frac{1}{2} \int_{0}^{\infty} \frac{\ln ^{2 n-1} x d x}{1-x^{2}}=\frac{1-2^{2 n}}{4 n}\left|B_{2 n}\right| \pi^{2 n}
$$

The first identity follows by checking that the integral over $[1, \infty)$ is the same as that over $[0,1]$ via $x \mapsto 1 / x$.

To obtain the value, expand the integrand in the form

$$
\int_{0}^{1} \frac{\ln ^{2 n-1} x d x}{1-x^{2}}=\sum_{k=0}^{\infty} \int_{0}^{1} x^{2 k} \ln ^{2 n-1} x d x
$$

The change of variable $t=-\ln x$ gives

$$
\int_{0}^{1} \frac{\ln ^{2 n-1} x d x}{1-x^{2}}=-(2 n-1)!\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2 n}}
$$

The standard even-odd splitting in the sum and the identity

$$
\zeta(2 n)=\frac{2^{2 n-1}\left|B_{2 n}\right|}{(2 n)!} \pi^{2 n}
$$

gives the result.

