PROOF OF FORMULA 4.271.16

$$
\int_{0}^{1} \ln ^{n} x \frac{x^{p-1}}{1+x^{q}} d x=\frac{1}{q^{n+1}} \beta^{(n)}\left(\frac{p}{q}\right)
$$

The change of variables $t=x^{q}$ yields

$$
\int_{0}^{1} \ln ^{n} x \frac{x^{p-1}}{1+x^{q}} d x=\frac{1}{q^{n+1}} \int_{0}^{1} \ln ^{n} t \frac{t^{p / q-1}}{1+t} d t
$$

The result now follows by differentiating the integral representation

$$
\beta(z)=\int_{0}^{1} \frac{t^{z-1}}{1+t} d t
$$

n times with respect to z and then replacing $z=p / q$.

