PROOF OF FORMULA 4.271.3

$$
\int_{0}^{1} \frac{\ln ^{2 n-1} x d x}{1-x}=-\frac{2^{2 n-2}}{n} \pi^{2 n}\left|B_{2 n}\right|
$$

Entry 4.271.4 states that

$$
\int_{0}^{1} \frac{\ln ^{p-1} x d x}{1-x}=(-1)^{p-1} \Gamma(p) \zeta(p)
$$

The special value $p=2 n$ gives the result, using the relation

$$
\zeta(2 n)=\frac{2^{2 n-1} \pi^{2 n}\left|B_{2 n}\right|}{(2 n)!}
$$

