SCIENTIA
Series A: Mathematical Sciences, Vol. 20 (2010), 61–71
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2010

The integrals in Gradshteyn and Ryzhik. Part 17: The Riemann zeta function

Tewodros Amdeberhan^a, Khristo N. Boyadzhiev^b and Victor H. Moll^a

ABSTRACT. The table of Gradshteyn and Ryzhik contains some integrals that can be expressed in terms of the Riemann zeta $\zeta(s) = \sum_{n=1}^{\infty} 1/n^s$. In this note we present some of these evaluations.

1. Introduction

The table of integrals $[\mathbf{3}]$ contains a large variety of definite integrals that involve the *Riemann zeta* function

(1.1)
$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

The series converges for $\operatorname{Re} s > 1$.

This is a classical function that plays an important role in the distribution of prime numbers. The reader will find in [2] a historical description of the fundamental properties of $\zeta(s)$. The textbook [4] presents interesting information about the major open question related to $\zeta(s)$: all its non-trivial zeros are on the vertical line Re $s = \frac{1}{2}$. This is the famous *Riemann hypothesis*.

In this section we summarize elementary properties of ζ that will be employed in the evaluation of definite integrals.

The zeta function at the even integers. The values of $\zeta(s)$ at the *even* integers are given in terms of the *Bernoulli numbers* defined by the generating function

(1.2)
$$\frac{u}{e^u - 1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} u^k.$$

2000 Mathematics Subject Classification. Primary 33. Key words and phrases. Integrals, Zeta function.

⁶¹

It turns out that $B_{2n+1} = 0$ for n > 1. The relation

(1.3)
$$\zeta(2n) = (-1)^{n-1} \frac{(2\pi)^{2n}}{2(2n)!} B_{2n}$$

can be found in [1]. The sign of B_{2n} is $(-1)^{n-1}$, so we can write (1.3) as

(1.4)
$$\zeta(2n) = \frac{(2\pi)^{2n}}{2(2n)!} |B_{2n}|,$$

that looks more compact. The case of $\zeta(2n+1)$ is more compicated. No simple expression, such as (1.4), is known.

There are other series that can be expressed in terms of $\zeta(s)$. We present here the case of the alternating zeta series.

Proposition 1.1. Assume s > 1. Then

(1.5)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^s} = (2^{1-s} - 1)\zeta(s).$$

PROOF. Split the sum (1.1) according to the parity of n. Then

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^s} = \sum_{k=1}^{\infty} \frac{1}{(2k)^s} - \sum_{k=1}^{\infty} \frac{1}{(2k-1)^s}$$
$$= 2^{-s} \sum_{k=1}^{\infty} \frac{1}{k^s} - \left(\sum_{k=1}^{\infty} \frac{1}{k^s} - \sum_{k=1}^{\infty} \frac{1}{(2k)^s}\right).$$

The identity (1.5) has been established.

Note 1.2. The expression (1.5), written as

(1.6)
$$\zeta(s) = \frac{1}{2^{1-s} - 1} \sum_{n=1}^{\infty} \frac{(-1)^k}{k^s}$$

provides a *continuation* of $\zeta(s)$ to $0 < \operatorname{Re} s$, with the natural exception at s = 1.

Proposition 1.3. Let a > 1. Then

(1.7)
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^a} = \frac{2^a - 1}{2^a} \zeta(a)$$

PROOF. This simply comes from

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^a} = \sum_{k=1}^{\infty} \frac{1}{k^a} - \sum_{k=1}^{\infty} \frac{1}{(2k)^a}.$$

2. A first integral representation

The first integral in [3] that is evaluated in terms of the Riemann zeta function is 3.411.1:

(2.1)
$$\int_0^\infty \frac{x^{s-1} dx}{e^{px} - 1} = \frac{\Gamma(s)\zeta(s)}{p^s}$$

Here Γ is the gamma function defined by

(2.2)
$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} \, dt.$$

To verify (2.1) observe that the parameter p can be scaled out of the integral. Indeed, the change of variables t = px shows that (2.1) is equivalent to the case p = 1:

(2.3)
$$\int_0^\infty \frac{t^{s-1} dt}{e^t - 1} = \Gamma(s)\zeta(s).$$

To prove this, expand the integrand as

(2.4)
$$\frac{1}{e^t - 1} = \frac{e^{-t}}{1 - e^{-t}} = \sum_{k=0}^{\infty} e^{-(k+1)t}.$$

Therefore,

(2.5)
$$\int_0^\infty \frac{x^{s-1} dx}{e^x - 1} = \sum_{k=0}^\infty \int_0^\infty t^{s-1} e^{-(k+1)t} dt.$$

The change of variables v = (1 + k)t yields the result.

Example 2.1. The evaluation of 3.411.2:

(2.6)
$$\int_0^\infty \frac{x^{2n-1} dx}{e^{px} - 1} = (-1)^{n-1} \left(\frac{2\pi}{p}\right)^{2n} \frac{B_{2n}}{4n}$$

can be reduced to the case p = 1 by the scaling t = px and it follows from (1.3). Using (1.4) we write it as

(2.7)
$$\int_0^\infty \frac{x^{2n-1} \, dx}{e^x - 1} = \frac{(2\pi)^{2n}}{4n} |B_{2n}|$$

Example 2.2. The evaluation of 3.411.3:

(2.8)
$$\int_0^\infty \frac{x^{s-1} dx}{e^{px} + 1} = \frac{(1 - 2^{1-s})\Gamma(s)}{p^s} \zeta(s),$$

is first reduced, via t = px, to the case p = 1:

(2.9)
$$\int_0^\infty \frac{t^{s-1} dx}{e^t + 1} = (1 - 2^{1-s}) \Gamma(s) \zeta(s),$$

and this is evaluated expanding the integrand and integrating term by term to obtain

(2.10)
$$\int_0^\infty \frac{t^{s-1}}{e^t + 1} dt = \frac{1}{\Gamma(s)} \sum_{k=0}^\infty \frac{(-1)^k}{(k+1)^s}.$$

The result now follows from (1.5).

Example 2.3. The special case s = 2n in (2.8) yields

(2.11)
$$\int_0^\infty \frac{t^{2n-1} dt}{e^t + 1} = (1 - 2^{1-2n}) \frac{(2\pi)^{2n}}{4n} |B_{2n}|.$$

The integral 3.411.4:

(2.12)
$$\int_0^\infty \frac{x^{2n-1} \, dx}{e^{px} + 1} = (1 - 2^{1-2n}) \left(\frac{2\pi}{p}\right)^{2n} \frac{|B_{2n}|}{4n},$$

is reduced to (2.11) by the usual scaling.

3. Integrals involving partial sums of $\zeta(s)$

In this section we consider in a unified form a series of definite integrals in [3] whose values involve partial sums of the Riemann zeta function. We begin with the evaluation of **3.411.6**: expanding the integrand we obtain

(3.1)
$$\int_0^\infty \frac{x^{a-1}e^{-\beta x}}{1-\delta e^{-\gamma x}} dx = \sum_{k=0}^\infty \delta^k \int_0^\infty x^{a-1}e^{-x(\beta+\gamma k)} dx$$
$$= \frac{\Gamma(a)}{\gamma^a} \sum_{k=0}^\infty \delta^k \left(k + \frac{\beta}{\gamma}\right)^{-a}.$$

The sum is identified as the *Lerch function* defined by

(3.2)
$$\Phi(z,s,v) = \sum_{n=0}^{\infty} (v+n)^{-s} z^n$$

Therefore

(3.3)
$$\int_0^\infty \frac{x^{a-1}e^{-\beta x} dx}{1-\delta e^{-\gamma x}} = \frac{\Gamma(a)}{\gamma^a} \Phi\left(\delta, a, \beta/\gamma\right).$$

Integrals involving the Lerch Φ -function will be discussed in a future publication. Here we simply observe that **3.411.22**:

(3.4)
$$\int_{0}^{\infty} \frac{x^{p-1} dx}{e^{rx} - q} = \frac{\Gamma(p)}{r^{p}} \Phi(q, p, 1)$$

follows directly from (3.1) after writing

(3.5)
$$\int_0^\infty \frac{x^{p-1} dx}{e^{rx} - q} = \int_0^\infty \frac{x^{p-1} e^{-rx} dx}{1 - q e^{-rx}}.$$

We now discuss several special cases of (3.1).

Example 3.1. The case $\delta = 1$ in (3.1) is related to the *Hurwitz zeta function* defined by

(3.6)
$$\zeta(z,q) = \sum_{n=0}^{\infty} \frac{1}{(n+q)^z}.$$

64

Replacing $\delta = 1$ in (3.1) gives

(3.7)
$$\int_0^\infty \frac{x^{a-1}e^{-\beta x}}{1-e^{-\gamma x}} dx = \frac{\Gamma(a)}{\gamma^a} \zeta(a,\beta/\gamma).$$

This appears as 3.411.7.

Example 3.2. We now consider the special case of (3.7) in which β/γ is a positive integer, say, $\beta = m\gamma$. Then we obtain

(3.8)
$$\int_0^\infty \frac{x^{a-1}e^{-m\gamma x} \, dx}{1-e^{-\gamma x}} = \frac{\Gamma(a)}{\gamma^a} \sum_{k=0}^\infty \frac{1}{(m+k)^a}.$$

Now observe that

(3.9)
$$\sum_{k=0}^{\infty} \frac{1}{(m+k)^a} = \sum_{k=1}^{\infty} \frac{1}{k^a} - \sum_{k=1}^{m-1} \frac{1}{k^a},$$

so that

(3.10)
$$\int_0^\infty \frac{x^{a-1}e^{-m\gamma x} \, dx}{1-e^{-\gamma x}} = \frac{\Gamma(a)}{\gamma^a} \left(\zeta(a) - \sum_{k=1}^{m-1} \frac{1}{k^a}\right).$$

We restate the previous result.

Proposition 3.3. Let $a, \gamma \in \mathbb{R}^+$ and $m \in \mathbb{N}$. Then

(3.11)
$$\int_0^\infty \frac{x^{a-1}e^{-m\gamma x} \, dx}{1-e^{-\gamma x}} = \frac{\Gamma(a)}{\gamma^a} \left(\zeta(a) - \sum_{k=1}^{m-1} \frac{1}{k^a}\right).$$

Example 3.4. The value a = 2, $\gamma = 1$ and m = 1 in (3.10) give

(3.12)
$$\int_0^\infty \frac{xe^{-x}\,dx}{e^x - 1} = \frac{\pi^2}{6} - 1,$$

suing $\Gamma(2) = 1$ and $\zeta(2) = \pi^2/6$. This appears as **3.411.9** in [**3**].

Example 3.5. The case a = 3, $\gamma = 1$ and $m \in \mathbb{N}$ gives **3.411.14**:

(3.13)
$$\int_0^\infty \frac{x^2 e^{-mx}}{1 - e^{-x}} \, dx = 2\left(\zeta(3) - \sum_{k=1}^{m-1} \frac{1}{k^3}\right).$$

Example 3.6. The case a = 4, $\gamma = 1$ and $m \in \mathbb{N}$ give 3.411.17:

(3.14)
$$\int_0^\infty \frac{x^3 e^{-mx}}{1 - e^{-x}} \, dx = \frac{\pi^4}{15} - 6 \sum_{k=1}^{m-1} \frac{1}{k^4}.$$

Here we have used $\Gamma(4) = 6$ and $\zeta(4) = \pi^4/90$.

Example 3.7. Formula **3.411.25** is:

(3.15)
$$\int_0^\infty x \, \frac{1+e^{-x}}{e^x-1} \, dx = \int_0^\infty \frac{xe^{-x} \, dx}{1-e^{-x}} + \int_0^\infty \frac{xe^{-2x} \, dx}{1-e^{-x}}.$$

The first integral corresponds to $a = 2, \gamma = 1, m = 1$ and the second one to $a = 2, \gamma = 1, m = 2$. Therefore

(3.16)
$$\int_0^\infty x \, \frac{1+e^{-x}}{e^x-1} \, dx = \Gamma(2) \left(\zeta(2)+\zeta(2)-1\right) = \frac{\pi^2}{3} - 1.$$

Example 3.8. The final example in this section is 3.411.21:

(3.17)
$$\int_0^\infty x^{n-1} \frac{1 - e^{-mx}}{1 - e^x} \, dx = (n-1)! \sum_{k=1}^m \frac{1}{k^n}.$$

We now show that the *correct formula* is

(3.18)
$$\int_0^\infty x^{n-1} \frac{1 - e^{-mx}}{1 - e^x} \, dx = -(n-1)! \sum_{k=1}^m \frac{1}{k^n}$$

To establish this, we write

(3.19)
$$\int_0^\infty x^{n-1} \frac{1 - e^{-mx}}{1 - e^x} \, dx = \int_0^\infty \frac{x^{n-1} e^{-(m+1)x}}{1 - e^{-x}} \, dx - \int_0^\infty \frac{x^{n-1} e^{-x}}{1 - e^{-x}} \, dx$$

The first integral corresponds to $a = n, \gamma = 1$ and m + 1 instead of m, so that

(3.20)
$$\int_0^\infty \frac{x^{n-1}e^{-(m+1)x}}{1-e^{-x}} \, dx = \Gamma(n) \left(\zeta(n) - \sum_{k=1}^m \frac{1}{k^n}\right).$$

The second integral corresponds to $a = n, \gamma = 1$ and m = 1. Therefore

(3.21)
$$\int_0^\infty \frac{x^{n-1}e^{-x}}{1-e^{-x}} \, dx = \Gamma(n)\zeta(n).$$

Formula (3.18) has been established.

4. The alternating version

The alternating version of (3.1) gives

(4.1)
$$\int_0^\infty \frac{x^{a-1}e^{-\beta x}}{1+\delta e^{-\gamma x}} \, dx = \frac{\Gamma(a)}{\gamma^a} \sum_{k=0}^\infty (-1)^k \delta^k \left(k + \frac{\beta}{\gamma}\right)^{-a},$$

that in the case $\delta = 1$ provides

(4.2)
$$\int_0^\infty \frac{x^{a-1} e^{-\beta x} dx}{1 + e^{-\gamma x}} = \frac{\Gamma(a)}{\gamma^a} \sum_{k=0}^\infty (-1)^k (k + \beta/\gamma)^{-a}.$$

In particular, if $\beta = m\gamma$, with $m \in \mathbb{N}$, we have

(4.3)
$$\int_0^\infty \frac{x^{a-1}e^{-m\gamma x} \, dx}{1+e^{-\gamma x}} = \frac{\Gamma(a)}{\gamma^a} \sum_{k=0}^\infty \frac{(-1)^k}{(k+m)^a}.$$

Using (1.5) we obtain the next proposition:

Proposition 4.1. Let $a, \gamma \in \mathbb{R}^+$ and $m \in \mathbb{N}$. Then

(4.4)
$$\int_0^\infty \frac{x^{a-1}e^{-m\gamma x} \, dx}{1+e^{-\gamma x}} = \frac{(-1)^m \Gamma(a)}{\gamma^a} \left((2^{1-a}-1)\zeta(a) - \sum_{k=1}^{m-1} \frac{(-1)^k}{k^a} \right) + \frac{1}{2} \left((2^{1-a}-1)\zeta(a) -$$

The next examples come from (4.3).

Example 4.2. The case a = n, $\gamma = 1$ and m = p + 1 give **3.411.8**:

(4.5)
$$\int_0^\infty \frac{x^{n-1}e^{-px}\,dx}{1+e^x} = (-1)^p \Gamma(n) \left[(1-2^{1-n})\zeta(n) + \sum_{k=1}^p \frac{(-1)^k}{k^n} \right].$$

The reader will check that the answer can be written as

(4.6)
$$\int_0^\infty \frac{x^{n-1}e^{-px}\,dx}{1+e^{-x}} = (n-1)! \sum_{k=1}^\infty \frac{(-1)^{k-1}}{(p+k)^n}.$$

Example 4.3. The case a = 2, c = 1 and m = 2 gives **3.411.10**:

(4.7)
$$\int_0^\infty \frac{xe^{-2x}}{1+e^{-x}} \, dx = 1 - \frac{\pi^2}{12}.$$

Example 4.4. The case a = 2, c = 1 and m = 3 gives **3.411.11**:

(4.8)
$$\int_0^\infty \frac{xe^{-3x}}{1+e^{-x}} \, dx = \frac{\pi^2}{12} - \frac{3}{4}.$$

Example 4.5. The case a = 2, c = 1 and m = 2n gives **3.411.12**:

(4.9)
$$\int_0^\infty \frac{xe^{-(2n-1)x}}{1+e^{-x}} \, dx = -\frac{\pi^2}{12} + \sum_{k=1}^{2n-1} \frac{(-1)^{k-1}}{k^2}.$$

Example 4.6. The case a = 2, c = 1 and m = 2n + 1 gives **3.411.13**:

(4.10)
$$\int_0^\infty \frac{xe^{-2nx}}{1+e^{-x}} \, dx = \frac{\pi^2}{12} + \sum_{k=1}^{2n} \frac{(-1)^k}{k^2}.$$

Example 4.7. The case a = 3, c = 1 and $m \in \mathbb{N}$ gives **3.411.15**:

(4.11)
$$\int_0^\infty \frac{x^2 e^{-nx}}{1+e^{-x}} \, dx = (-1)^{n+1} \left(\frac{3}{2}\zeta(3) + 2\sum_{k=1}^{n-1} \frac{(-1)^k}{k^3}\right).$$

Example 4.8. The case a = 4, c = 1 and $m \in \mathbb{N}$ gives **3.411.18**:

(4.12)
$$\int_0^\infty \frac{x^3 e^{-nx}}{1+e^{-x}} \, dx = (-1)^{n+1} \left(\frac{7\pi^4}{120} + 6\sum_{k=1}^{n-1} \frac{(-1)^k}{k^4} \right).$$

Example 4.9. Similar manipulations produces 3.411.26:

(4.13)
$$\int_0^\infty x e^{-x} \frac{1 - e^{-x}}{1 + e^{-3x}} dx = \frac{2\pi^2}{27}.$$

5. The logarithmic scale

The integrals described in Section 4 can be transformed into logarithmic integrals via the change of variables $t = e^{-cx}$. For example (3.1) becomes

(5.1)
$$\int_0^1 \frac{t^{\beta-1} \ln^{a-1} t \, dt}{1-\delta t} = (-1)^{a-1} \Gamma(a) \sum_{k=0}^\infty \frac{\delta^k}{(k+\beta)^a}$$

and the special case $\delta = 1$ replaces (3.7) with

(5.2)
$$\int_0^1 \frac{t^{\beta-1} \ln^{a-1} t \, dt}{1-t} = (-1)^{a-1} \Gamma(a) \sum_{k=0}^\infty \frac{1}{(k+\beta)^a}.$$

In the special case that $m \in \mathbb{N}$, the formula (3.11) becomes

(5.3)
$$\int_0^1 \frac{t^{m-1} \ln^{a-1} t \, dt}{1-t} = (-1)^{a-1} \Gamma(a) \left(\zeta(a) - \sum_{k=1}^{m-1} \frac{1}{k^a} \right),$$

in particular, for m = 1, we have

(5.4)
$$\int_0^1 \frac{\ln^{a-1} t \, dt}{1-t} = (-1)^{a-1} \Gamma(a) \zeta(a).$$

Finally, the change of variables $t = s^{\gamma}$ in (5.2) produces

(5.5)
$$\int_0^1 \frac{s^{\beta-1} \ln^{a-1} s \, dt}{1-s^{\gamma}} = (-1)^{a-1} \Gamma(\gamma) \sum_{k=0}^\infty \frac{1}{(\gamma k+\beta)^a}.$$

We now present examples of these formulas that appear in [3].

Example 5.1. Formula (5.4) appears in [3] only for a even. This is the case where the value of $\zeta(a)$ reduces via (1.3). We find **4.231.2** for a = 2:

(5.6)
$$\int_0^1 \frac{\ln x \, dx}{1-x} = -\frac{\pi^2}{6},$$

and 4.262.2:

(5.7)
$$\int_0^1 \frac{\ln^3 x \, dx}{1-x} = -\frac{\pi^4}{15},$$

that uses $\Gamma(4) = 6$ and $\zeta(4) = \pi^4/90$. The next example is **4.264.2**:

(5.8)
$$\int_0^1 \frac{\ln^5 x \, dx}{1-x} = -\frac{8\pi^6}{63}$$

that uses $\Gamma(6) = 120$ and $\zeta(6) = \pi^6/945$. The final example is **4.266.2**:

(5.9)
$$\int_0^1 \frac{\ln^7 x \, dx}{1-x} = -\frac{8\pi^8}{15},$$

that uses $\Gamma(8) = 5040$ and $\zeta(8) = \pi^8/9450$.

Example 5.2. The choice a = 4 and m = n + 1 in (5.3) produces 4.262.5:

(5.10)
$$\int_0^1 \frac{x^n \ln^3 x}{1-x} \, dx = -\frac{\pi^4}{15} + 6\sum_{k=1}^n \frac{1}{k^4}.$$

Example 5.3. The choice a = 4, $\beta = 2n + 1$, and $\gamma = 2$ in (5.5) gives 4.262.6:

(5.11)
$$\int_0^1 \frac{x^{2n} \ln^3 x}{1 - x^2} \, dx = -\frac{\pi^4}{16} + 6 \sum_{k=1}^n \frac{1}{(2k+1)^4}.$$

In this calculation we have used (1.7) to produce the value

(5.12)
$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{96}.$$

Example 5.4. The choice a = 3 and m = n + 1 in (5.3) gives 4.261.12:

(5.13)
$$\int_0^1 \frac{x^n \ln^2 x}{1-x} \, dx = 2\left(\zeta(3) - \sum_{k=1}^n \frac{1}{k^3}\right).$$

Example 5.5. The choice a = 3, $\beta = 2n + 1$, and $\gamma = 2$ gives 4.261.13:

(5.14)
$$\int_0^1 \frac{x^{2n} \ln^2 x}{1 - x^2} \, dx = \frac{7\zeta(3)}{4} - 2\sum_{k=0}^{n-1} \frac{1}{(2k+1)^3}.$$

6. The alternating logarithmic scale

There is a corresponding list of formulas for logarithmic integrals that produce alternating series. For example (5.1) becomes

(6.1)
$$\int_0^1 \frac{t^{\beta-1} \ln^{a-1} t \, dt}{1+\delta t} = (-1)^{a-1} \Gamma(a) \sum_{k=0}^\infty \frac{(-1)^k \delta^k}{(k+\beta)^a}$$

and the case $\delta = 1$ gives

(6.2)
$$\int_0^1 \frac{t^{\beta-1} \ln^{a-1} t \, dt}{1+t} = (-1)^{a-1} \Gamma(a) \sum_{k=0}^\infty \frac{(-1)^k}{(k+\beta)^a}.$$

In the special case that $m \in \mathbb{N}$, we have

(6.3)
$$\int_0^1 \frac{t^{m-1} \ln^{a-1} t \, dt}{1+t} = (-1)^{a+m} \Gamma(a) \left(\frac{2^{a-1} - 1}{2^{a-1}} \zeta(a) + \sum_{k=1}^{m-1} \frac{(-1)^k}{k^a} \right),$$

in particular, for m = 1, we have

(6.4)
$$\int_0^1 \frac{\ln^{a-1} t \, dt}{1+t} = (-1)^{a+1} \frac{2^{a-1} - 1}{2^{a-1}} \Gamma(a)\zeta(a).$$

Finally (5.5) produces

(6.5)
$$\int_0^1 \frac{s^{\beta-1} \ln^{a-1} s \, ds}{1+s^{\gamma}} = (-1)^{a-1} \Gamma(a) \sum_{k=0}^\infty \frac{(-1)^k}{(\gamma k+\beta)^a}$$

We now present examples of these formulas that appear in [3].

Example 6.1. The choice a = 2 in (6.4) produces **4.231.1**:

(6.6)
$$\int_0^1 \frac{\ln x}{1+x} \, dx = -\frac{\pi^2}{12}$$

The table contains formulas that use (6.4) only for *a* even, in that form, the integrals are expressible as powers of π . For example, **4.262.1**:

(6.7)
$$\int_0^1 \frac{\ln^3 x}{1+x} \, dx = -\frac{7\pi^4}{120},$$

using $\Gamma(4) = 6$ and $\zeta(4) = \pi^4/90$. Similarly, 4.264.1:

(6.8)
$$\int_0^1 \frac{\ln^5 x}{1+x} \, dx = -\frac{31\pi^6}{252}$$

uses $\Gamma(6) = 120$ and $\zeta(6) = \pi^6/945$. The final example of this form is **4.266.1**:

(6.9)
$$\int_0^1 \frac{\ln^7 x}{1+x} \, dx = -\frac{127\pi^8}{240},$$

that employs $\Gamma(8) = 5040$ and $\zeta(8) = \pi^8/9450$. The next cases in this list would be

(6.10)
$$\int_0^1 \frac{\ln^9 x}{1+x} \, dx = -\frac{511\pi^{10}}{132},$$

and

(6.11)
$$\int_0^1 \frac{\ln^{11} x}{1+x} \, dx = -\frac{1414477\pi^{12}}{32760},$$

that do not appear in [3].

Example 6.2. The choice a = 2n + 1 in (6.4) gives 4.271.1:

(6.12)
$$\int_0^1 \frac{\ln^{2n} x}{1+x} \, dx = \frac{2^{2n} - 1}{2^{2n}} (2n)! \, \zeta(2n+1).$$

Example 6.3. The choice a = 2n in (6.4) gives **4.271.2**:

(6.13)
$$\int_0^1 \frac{\ln^{2n-1} x}{1+x} \, dx = -\frac{2^{2n-1}-1}{2^{2n-1}} (2n-1)! \, \zeta(2n),$$

and using (1.3) gives

(6.14)
$$\int_0^1 \frac{\ln^{2n-1} x}{1+x} \, dx = -\frac{2^{2n-1}-1}{2n} |B_{2n}| \pi^{2n}.$$

70

7. Integrals over the whole line

The change of variables $x = \frac{1}{p}e^{-t}$ in (2.1) gives entry **3.333.1**:

(7.1)
$$\int_{-\infty}^{\infty} \frac{e^{-sx} dx}{\exp(e^{-x}) - 1} = \Gamma(s)\zeta(s).$$

The same change of variable in (2.8) gives entry **3.333.2**:

(7.2)
$$\int_{-\infty}^{\infty} \frac{e^{-sx} \, dx}{\exp(e^{-x}) + 1} = (1 - 2^{1-s}) \Gamma(s) \zeta(s).$$

The exceptional case

(7.3)
$$\int_{-\infty}^{\infty} \frac{e^{-x} dx}{\exp(e^{-x}) + 1} = \ln 2$$

mentioned in entry 3.333.2, is elementary.

Acknowledgements. The work of the third author was partially supported by NSF-DMS 0713836.

References

- G. Boros and V. Moll. Irresistible Integrals. Cambridge University Press, New York, 1st edition, 2004.
- [2] H. Edwards. Riemann's zeta function. Academic Press, New York, 1974.
- [3] I. S. Gradshteyn and I. M. Ryzhik. *Table of Integrals, Series, and Products*. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.
- [4] B. Rooney, P. Borwein, S. Choi and A. Weirathmueller. The Riemann hypothesis. A resource for the afficionado and virtuoso alike. Canadian Mathematical Society, 1st edition, 2008.

Received 22 03 2010 , revised 21 07 2010

^aDEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LA 70118 USA *E-mail address*: tamdeberha@math.tulane.edu *E-mail address*: vhm@math.tulane.edu

 $^{\rm b}{\rm Department}$ of Mathematics, Ohio Northern University, Ada, OH 45810 USA

 $E\text{-}mail \ address: k-boyadzhiev@onu.edu$