SCIENTIA

Series A: Mathematical Sciences, Vol. 20 (2010), 61-71
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
(C) Universidad Técnica Federico Santa María 2010

The integrals in Gradshteyn and Ryzhik.
 Part 17: The Riemann zeta function

Tewodros Amdeberhan ${ }^{\text {a }}$, Khristo N. Boyadzhiev ${ }^{\text {b }}$ and Victor H. Moll ${ }^{\text {a }}$

Abstract

The table of Gradshteyn and Ryzhik contains some integrals that can be expressed in terms of the Riemann zeta $\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}$. In this note we present some of these evaluations.

1. Introduction

The table of integrals [3] contains a large variety of definite integrals that involve the Riemann zeta function

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} . \tag{1.1}
\end{equation*}
$$

The series converges for $\operatorname{Re} s>1$.
This is a classical function that plays an important role in the distribution of prime numbers. The reader will find in [2] a historical description of the fundamental properties of $\zeta(s)$. The textbook [4] presents interesting information about the major open question related to $\zeta(s)$: all its non-trivial zeros are on the vertical line $\operatorname{Re} s=\frac{1}{2}$. This is the famous Riemann hypothesis.

In this section we summarize elementary properties of ζ that will be employed in the evaluation of definite integrals.

The zeta function at the even integers. The values of $\zeta(s)$ at the even integers are given in terms of the Bernoulli numbers defined by the generating function

$$
\begin{equation*}
\frac{u}{e^{u}-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} u^{k} \tag{1.2}
\end{equation*}
$$

2000 Mathematics Subject Classification. Primary 33.
Key words and phrases. Integrals, Zeta function.

It turns out that $B_{2 n+1}=0$ for $n>1$. The relation

$$
\begin{equation*}
\zeta(2 n)=(-1)^{n-1} \frac{(2 \pi)^{2 n}}{2(2 n)!} B_{2 n} \tag{1.3}
\end{equation*}
$$

can be found in $[\mathbf{1}]$. The sign of $B_{2 n}$ is $(-1)^{n-1}$, so we can write (1.3) as

$$
\begin{equation*}
\zeta(2 n)=\frac{(2 \pi)^{2 n}}{2(2 n)!}\left|B_{2 n}\right| \tag{1.4}
\end{equation*}
$$

that looks more compact. The case of $\zeta(2 n+1)$ is more compicated. No simple expression, such as (1.4), is known.

There are other series that can be expressed in terms of $\zeta(s)$. We present here the case of the alternating zeta series.

Proposition 1.1. Assume $s>1$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}}=\left(2^{1-s}-1\right) \zeta(s) \tag{1.5}
\end{equation*}
$$

Proof. Split the sum (1.1) according to the parity of n. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}} & =\sum_{k=1}^{\infty} \frac{1}{(2 k)^{s}}-\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{s}} \\
& =2^{-s} \sum_{k=1}^{\infty} \frac{1}{k^{s}}-\left(\sum_{k=1}^{\infty} \frac{1}{k^{s}}-\sum_{k=1}^{\infty} \frac{1}{(2 k)^{s}}\right)
\end{aligned}
$$

The identity (1.5) has been established.
Note 1.2. The expression (1.5), written as

$$
\begin{equation*}
\zeta(s)=\frac{1}{2^{1-s}-1} \sum_{n=1}^{\infty} \frac{(-1)^{k}}{k^{s}} \tag{1.6}
\end{equation*}
$$

provides a continuation of $\zeta(s)$ to $0<\operatorname{Re} s$, with the natural exception at $s=1$.
Proposition 1.3. Let $a>1$. Then

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{a}}=\frac{2^{a}-1}{2^{a}} \zeta(a) \tag{1.7}
\end{equation*}
$$

Proof. This simply comes from

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{a}}=\sum_{k=1}^{\infty} \frac{1}{k^{a}}-\sum_{k=1}^{\infty} \frac{1}{(2 k)^{a}}
$$

2. A first integral representation

The first integral in [3] that is evaluated in terms of the Riemann zeta function is 3.411.1:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{s-1} d x}{e^{p x}-1}=\frac{\Gamma(s) \zeta(s)}{p^{s}} \tag{2.1}
\end{equation*}
$$

Here Γ is the gamma function defined by

$$
\begin{equation*}
\Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t \tag{2.2}
\end{equation*}
$$

To verify (2.1) observe that the parameter p can be scaled out of the integral. Indeed, the change of variables $t=p x$ shows that (2.1) is equivalent to the case $p=1$:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{s-1} d t}{e^{t}-1}=\Gamma(s) \zeta(s) \tag{2.3}
\end{equation*}
$$

To prove this, expand the integrand as

$$
\begin{equation*}
\frac{1}{e^{t}-1}=\frac{e^{-t}}{1-e^{-t}}=\sum_{k=0}^{\infty} e^{-(k+1) t} \tag{2.4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{s-1} d x}{e^{x}-1}=\sum_{k=0}^{\infty} \int_{0}^{\infty} t^{s-1} e^{-(k+1) t} d t \tag{2.5}
\end{equation*}
$$

The change of variables $v=(1+k) t$ yields the result.

Example 2.1. The evaluation of 3.411.2:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2 n-1} d x}{e^{p x}-1}=(-1)^{n-1}\left(\frac{2 \pi}{p}\right)^{2 n} \frac{B_{2 n}}{4 n} \tag{2.6}
\end{equation*}
$$

can be reduced to the case $p=1$ by the scaling $t=p x$ and it follows from (1.3). Using (1.4) we write it as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2 n-1} d x}{e^{x}-1}=\frac{(2 \pi)^{2 n}}{4 n}\left|B_{2 n}\right| \tag{2.7}
\end{equation*}
$$

Example 2.2. The evaluation of $\mathbf{3 . 4 1 1 . 3}$:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{s-1} d x}{e^{p x}+1}=\frac{\left(1-2^{1-s}\right) \Gamma(s)}{p^{s}} \zeta(s) \tag{2.8}
\end{equation*}
$$

is first reduced, via $t=p x$, to the case $p=1$:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{s-1} d x}{e^{t}+1}=\left(1-2^{1-s}\right) \Gamma(s) \zeta(s) \tag{2.9}
\end{equation*}
$$

and this is evaluated expanding the integrand and integrating term by term to obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{s-1}}{e^{t}+1} d t=\frac{1}{\Gamma(s)} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)^{s}} \tag{2.10}
\end{equation*}
$$

The result now follows from (1.5).
Example 2.3. The special case $s=2 n$ in (2.8) yields

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{2 n-1} d t}{e^{t}+1}=\left(1-2^{1-2 n}\right) \frac{(2 \pi)^{2 n}}{4 n}\left|B_{2 n}\right| \tag{2.11}
\end{equation*}
$$

The integral 3.411.4:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2 n-1} d x}{e^{p x}+1}=\left(1-2^{1-2 n}\right)\left(\frac{2 \pi}{p}\right)^{2 n} \frac{\left|B_{2 n}\right|}{4 n} \tag{2.12}
\end{equation*}
$$

is reduced to (2.11) by the usual scaling.

3. Integrals involving partial sums of $\zeta(s)$

In this section we consider in a unified form a series of definite integrals in [3] whose values involve partial sums of the Riemann zeta function. We begin with the evaluation of 3.411.6: expanding the integrand we obtain

$$
\begin{align*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-\beta x}}{1-\delta e^{-\gamma x}} d x & =\sum_{k=0}^{\infty} \delta^{k} \int_{0}^{\infty} x^{a-1} e^{-x(\beta+\gamma k)} d x \tag{3.1}\\
& =\frac{\Gamma(a)}{\gamma^{a}} \sum_{k=0}^{\infty} \delta^{k}\left(k+\frac{\beta}{\gamma}\right)^{-a}
\end{align*}
$$

The sum is identified as the Lerch function defined by

$$
\begin{equation*}
\Phi(z, s, v)=\sum_{n=0}^{\infty}(v+n)^{-s} z^{n} \tag{3.2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-\beta x} d x}{1-\delta e^{-\gamma x}}=\frac{\Gamma(a)}{\gamma^{a}} \Phi(\delta, a, \beta / \gamma) . \tag{3.3}
\end{equation*}
$$

Integrals involving the Lerch Φ-function will be discussed in a future publication. Here we simply observe that 3.411.22:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{p-1} d x}{e^{r x}-q}=\frac{\Gamma(p)}{r^{p}} \Phi(q, p, 1) \tag{3.4}
\end{equation*}
$$

follows directly from (3.1) after writing

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{p-1} d x}{e^{r x}-q}=\int_{0}^{\infty} \frac{x^{p-1} e^{-r x} d x}{1-q e^{-r x}} \tag{3.5}
\end{equation*}
$$

We now discuss several special cases of (3.1).
Example 3.1. The case $\delta=1$ in (3.1) is related to the Hurwitz zeta function defined by

$$
\begin{equation*}
\zeta(z, q)=\sum_{n=0}^{\infty} \frac{1}{(n+q)^{z}} \tag{3.6}
\end{equation*}
$$

Replacing $\delta=1$ in (3.1) gives

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-\beta x}}{1-e^{-\gamma x}} d x=\frac{\Gamma(a)}{\gamma^{a}} \zeta(a, \beta / \gamma) \tag{3.7}
\end{equation*}
$$

This appears as 3.411.7.
Example 3.2. We now consider the special case of (3.7) in which β / γ is a positive integer, say, $\beta=m \gamma$. Then we obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-m \gamma x} d x}{1-e^{-\gamma x}}=\frac{\Gamma(a)}{\gamma^{a}} \sum_{k=0}^{\infty} \frac{1}{(m+k)^{a}} \tag{3.8}
\end{equation*}
$$

Now observe that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{1}{(m+k)^{a}}=\sum_{k=1}^{\infty} \frac{1}{k^{a}}-\sum_{k=1}^{m-1} \frac{1}{k^{a}} \tag{3.9}
\end{equation*}
$$

so that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-m \gamma x} d x}{1-e^{-\gamma x}}=\frac{\Gamma(a)}{\gamma^{a}}\left(\zeta(a)-\sum_{k=1}^{m-1} \frac{1}{k^{a}}\right) \tag{3.10}
\end{equation*}
$$

We restate the previous result.
Proposition 3.3. Let $a, \gamma \in \mathbb{R}^{+}$and $m \in \mathbb{N}$. Then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-m \gamma x} d x}{1-e^{-\gamma x}}=\frac{\Gamma(a)}{\gamma^{a}}\left(\zeta(a)-\sum_{k=1}^{m-1} \frac{1}{k^{a}}\right) \tag{3.11}
\end{equation*}
$$

Example 3.4. The value $a=2, \gamma=1$ and $m=1$ in (3.10) give

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-x} d x}{e^{x}-1}=\frac{\pi^{2}}{6}-1 \tag{3.12}
\end{equation*}
$$

suing $\Gamma(2)=1$ and $\zeta(2)=\pi^{2} / 6$. This appears as 3.411.9 in [3].
Example 3.5. The case $a=3, \gamma=1$ and $m \in \mathbb{N}$ gives 3.411.14:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2} e^{-m x}}{1-e^{-x}} d x=2\left(\zeta(3)-\sum_{k=1}^{m-1} \frac{1}{k^{3}}\right) \tag{3.13}
\end{equation*}
$$

Example 3.6. The case $a=4, \gamma=1$ and $m \in \mathbf{N}$ give 3.411.17:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{3} e^{-m x}}{1-e^{-x}} d x=\frac{\pi^{4}}{15}-6 \sum_{k=1}^{m-1} \frac{1}{k^{4}} \tag{3.14}
\end{equation*}
$$

Here we have used $\Gamma(4)=6$ and $\zeta(4)=\pi^{4} / 90$.
Example 3.7. Formula 3.411.25 is:

$$
\begin{equation*}
\int_{0}^{\infty} x \frac{1+e^{-x}}{e^{x}-1} d x=\int_{0}^{\infty} \frac{x e^{-x} d x}{1-e^{-x}}+\int_{0}^{\infty} \frac{x e^{-2 x} d x}{1-e^{-x}} \tag{3.15}
\end{equation*}
$$

The first integral corresponds to $a=2, \gamma=1, m=1$ and the second one to $a=$ $2, \gamma=1, m=2$. Therefore

$$
\begin{equation*}
\int_{0}^{\infty} x \frac{1+e^{-x}}{e^{x}-1} d x=\Gamma(2)(\zeta(2)+\zeta(2)-1)=\frac{\pi^{2}}{3}-1 \tag{3.16}
\end{equation*}
$$

Example 3.8. The final example in this section is 3.411.21:

$$
\begin{equation*}
\int_{0}^{\infty} x^{n-1} \frac{1-e^{-m x}}{1-e^{x}} d x=(n-1)!\sum_{k=1}^{m} \frac{1}{k^{n}} . \tag{3.17}
\end{equation*}
$$

We now show that the correct formula is

$$
\begin{equation*}
\int_{0}^{\infty} x^{n-1} \frac{1-e^{-m x}}{1-e^{x}} d x=-(n-1)!\sum_{k=1}^{m} \frac{1}{k^{n}} \tag{3.18}
\end{equation*}
$$

To establish this, we write

$$
\begin{equation*}
\int_{0}^{\infty} x^{n-1} \frac{1-e^{-m x}}{1-e^{x}} d x=\int_{0}^{\infty} \frac{x^{n-1} e^{-(m+1) x}}{1-e^{-x}} d x-\int_{0}^{\infty} \frac{x^{n-1} e^{-x}}{1-e^{-x}} d x \tag{3.19}
\end{equation*}
$$

The first integral corresponds to $a=n, \gamma=1$ and $m+1$ instead of m, so that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{n-1} e^{-(m+1) x}}{1-e^{-x}} d x=\Gamma(n)\left(\zeta(n)-\sum_{k=1}^{m} \frac{1}{k^{n}}\right) \tag{3.20}
\end{equation*}
$$

The second integral corresponds to $a=n, \gamma=1$ and $m=1$. Therefore

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{n-1} e^{-x}}{1-e^{-x}} d x=\Gamma(n) \zeta(n) \tag{3.21}
\end{equation*}
$$

Formula (3.18) has been established.

4. The alternating version

The alternating version of (3.1) gives

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-\beta x}}{1+\delta e^{-\gamma x}} d x=\frac{\Gamma(a)}{\gamma^{a}} \sum_{k=0}^{\infty}(-1)^{k} \delta^{k}\left(k+\frac{\beta}{\gamma}\right)^{-a} \tag{4.1}
\end{equation*}
$$

that in the case $\delta=1$ provides

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-\beta x} d x}{1+e^{-\gamma x}}=\frac{\Gamma(a)}{\gamma^{a}} \sum_{k=0}^{\infty}(-1)^{k}(k+\beta / \gamma)^{-a} . \tag{4.2}
\end{equation*}
$$

In particular, if $\beta=m \gamma$, with $m \in \mathbb{N}$, we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-m \gamma x} d x}{1+e^{-\gamma x}}=\frac{\Gamma(a)}{\gamma^{a}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+m)^{a}} \tag{4.3}
\end{equation*}
$$

Using (1.5) we obtain the next proposition:

Proposition 4.1. Let $a, \gamma \in \mathbb{R}^{+}$and $m \in \mathbb{N}$. Then

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} e^{-m \gamma x} d x}{1+e^{-\gamma x}}=\frac{(-1)^{m} \Gamma(a)}{\gamma^{a}}\left(\left(2^{1-a}-1\right) \zeta(a)-\sum_{k=1}^{m-1} \frac{(-1)^{k}}{k^{a}}\right) \tag{4.4}
\end{equation*}
$$

The next examples come from (4.3).
Example 4.2. The case $a=n, \gamma=1$ and $m=p+1$ give 3.411.8:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{n-1} e^{-p x} d x}{1+e^{x}}=(-1)^{p} \Gamma(n)\left[\left(1-2^{1-n}\right) \zeta(n)+\sum_{k=1}^{p} \frac{(-1)^{k}}{k^{n}}\right] . \tag{4.5}
\end{equation*}
$$

The reader will check that the answer can be written as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{n-1} e^{-p x} d x}{1+e^{-x}}=(n-1)!\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(p+k)^{n}} \tag{4.6}
\end{equation*}
$$

Example 4.3. The case $a=2, c=1$ and $m=2$ gives 3.411.10:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-2 x}}{1+e^{-x}} d x=1-\frac{\pi^{2}}{12} \tag{4.7}
\end{equation*}
$$

Example 4.4. The case $a=2, c=1$ and $m=3$ gives 3.411.11:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-3 x}}{1+e^{-x}} d x=\frac{\pi^{2}}{12}-\frac{3}{4} \tag{4.8}
\end{equation*}
$$

Example 4.5. The case $a=2, c=1$ and $m=2 n$ gives 3.411.12:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-(2 n-1) x}}{1+e^{-x}} d x=-\frac{\pi^{2}}{12}+\sum_{k=1}^{2 n-1} \frac{(-1)^{k-1}}{k^{2}} \tag{4.9}
\end{equation*}
$$

Example 4.6. The case $a=2, c=1$ and $m=2 n+1$ gives 3.411.13:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-2 n x}}{1+e^{-x}} d x=\frac{\pi^{2}}{12}+\sum_{k=1}^{2 n} \frac{(-1)^{k}}{k^{2}} \tag{4.10}
\end{equation*}
$$

Example 4.7. The case $a=3, c=1$ and $m \in \mathbb{N}$ gives 3.411.15:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2} e^{-n x}}{1+e^{-x}} d x=(-1)^{n+1}\left(\frac{3}{2} \zeta(3)+2 \sum_{k=1}^{n-1} \frac{(-1)^{k}}{k^{3}}\right) \tag{4.11}
\end{equation*}
$$

Example 4.8. The case $a=4, c=1$ and $m \in \mathbb{N}$ gives 3.411.18:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{3} e^{-n x}}{1+e^{-x}} d x=(-1)^{n+1}\left(\frac{7 \pi^{4}}{120}+6 \sum_{k=1}^{n-1} \frac{(-1)^{k}}{k^{4}}\right) \tag{4.12}
\end{equation*}
$$

Example 4.9. Similar manipulations produces 3.411.26:

$$
\begin{equation*}
\int_{0}^{\infty} x e^{-x} \frac{1-e^{-x}}{1+e^{-3 x}} d x=\frac{2 \pi^{2}}{27} \tag{4.13}
\end{equation*}
$$

5. The logarithmic scale

The integrals described in Section 4 can be transformed into logarithmic integrals via the change of variables $t=e^{-c x}$. For example (3.1) becomes

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{\beta-1} \ln ^{a-1} t d t}{1-\delta t}=(-1)^{a-1} \Gamma(a) \sum_{k=0}^{\infty} \frac{\delta^{k}}{(k+\beta)^{a}} \tag{5.1}
\end{equation*}
$$

and the special case $\delta=1$ replaces (3.7) with

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{\beta-1} \ln ^{a-1} t d t}{1-t}=(-1)^{a-1} \Gamma(a) \sum_{k=0}^{\infty} \frac{1}{(k+\beta)^{a}} \tag{5.2}
\end{equation*}
$$

In the special case that $m \in \mathbb{N}$, the formula (3.11) becomes

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{m-1} \ln ^{a-1} t d t}{1-t}=(-1)^{a-1} \Gamma(a)\left(\zeta(a)-\sum_{k=1}^{m-1} \frac{1}{k^{a}}\right) \tag{5.3}
\end{equation*}
$$

in particular, for $m=1$, we have

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{a-1} t d t}{1-t}=(-1)^{a-1} \Gamma(a) \zeta(a) \tag{5.4}
\end{equation*}
$$

Finally, the change of variables $t=s^{\gamma}$ in (5.2) produces

$$
\begin{equation*}
\int_{0}^{1} \frac{s^{\beta-1} \ln ^{a-1} s d t}{1-s^{\gamma}}=(-1)^{a-1} \Gamma(\gamma) \sum_{k=0}^{\infty} \frac{1}{(\gamma k+\beta)^{a}} \tag{5.5}
\end{equation*}
$$

We now present examples of these formulas that appear in [3].
Example 5.1. Formula (5.4) appears in [3] only for a even. This is the case where the value of $\zeta(a)$ reduces via (1.3). We find 4.231.2 for $a=2$:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln x d x}{1-x}=-\frac{\pi^{2}}{6} \tag{5.6}
\end{equation*}
$$

and 4.262.2:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{3} x d x}{1-x}=-\frac{\pi^{4}}{15} \tag{5.7}
\end{equation*}
$$

that uses $\Gamma(4)=6$ and $\zeta(4)=\pi^{4} / 90$. The next example is 4.264.2:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{5} x d x}{1-x}=-\frac{8 \pi^{6}}{63} \tag{5.8}
\end{equation*}
$$

that uses $\Gamma(6)=120$ and $\zeta(6)=\pi^{6} / 945$. The final example is 4.266.2:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{7} x d x}{1-x}=-\frac{8 \pi^{8}}{15} \tag{5.9}
\end{equation*}
$$

that uses $\Gamma(8)=5040$ and $\zeta(8)=\pi^{8} / 9450$.

Example 5.2. The choice $a=4$ and $m=n+1$ in (5.3) produces 4.262.5:

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{n} \ln ^{3} x}{1-x} d x=-\frac{\pi^{4}}{15}+6 \sum_{k=1}^{n} \frac{1}{k^{4}} \tag{5.10}
\end{equation*}
$$

Example 5.3. The choice $a=4, \beta=2 n+1$, and $\gamma=2$ in (5.5) gives 4.262.6:

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{2 n} \ln ^{3} x}{1-x^{2}} d x=-\frac{\pi^{4}}{16}+6 \sum_{k=1}^{n} \frac{1}{(2 k+1)^{4}} \tag{5.11}
\end{equation*}
$$

In this calculation we have used (1.7) to produce the value

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}}=\frac{\pi^{4}}{96} \tag{5.12}
\end{equation*}
$$

Example 5.4. The choice $a=3$ and $m=n+1$ in (5.3) gives 4.261.12:

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{n} \ln ^{2} x}{1-x} d x=2\left(\zeta(3)-\sum_{k=1}^{n} \frac{1}{k^{3}}\right) . \tag{5.13}
\end{equation*}
$$

Example 5.5. The choice $a=3, \beta=2 n+1$, and $\gamma=2$ gives 4.261.13:

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{2 n} \ln ^{2} x}{1-x^{2}} d x=\frac{7 \zeta(3)}{4}-2 \sum_{k=0}^{n-1} \frac{1}{(2 k+1)^{3}} \tag{5.14}
\end{equation*}
$$

6. The alternating logarithmic scale

There is a corresponding list of formulas for logarithmic integrals that produce alternating series. For example (5.1) becomes

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{\beta-1} \ln ^{a-1} t d t}{1+\delta t}=(-1)^{a-1} \Gamma(a) \sum_{k=0}^{\infty} \frac{(-1)^{k} \delta^{k}}{(k+\beta)^{a}} \tag{6.1}
\end{equation*}
$$

and the case $\delta=1$ gives

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{\beta-1} \ln ^{a-1} t d t}{1+t}=(-1)^{a-1} \Gamma(a) \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+\beta)^{a}} \tag{6.2}
\end{equation*}
$$

In the special case that $m \in \mathbb{N}$, we have

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{m-1} \ln ^{a-1} t d t}{1+t}=(-1)^{a+m} \Gamma(a)\left(\frac{2^{a-1}-1}{2^{a-1}} \zeta(a)+\sum_{k=1}^{m-1} \frac{(-1)^{k}}{k^{a}}\right) \tag{6.3}
\end{equation*}
$$

in particular, for $m=1$, we have

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{a-1} t d t}{1+t}=(-1)^{a+1} \frac{2^{a-1}-1}{2^{a-1}} \Gamma(a) \zeta(a) \tag{6.4}
\end{equation*}
$$

Finally (5.5) produces

$$
\begin{equation*}
\int_{0}^{1} \frac{s^{\beta-1} \ln ^{a-1} s d s}{1+s^{\gamma}}=(-1)^{a-1} \Gamma(a) \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(\gamma k+\beta)^{a}} \tag{6.5}
\end{equation*}
$$

We now present examples of these formulas that appear in [3].

Example 6.1. The choice $a=2$ in (6.4) produces 4.231.1:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln x}{1+x} d x=-\frac{\pi^{2}}{12} \tag{6.6}
\end{equation*}
$$

The table contains formulas that use (6.4) only for a even, in that form, the integrals are expressible as powers of π. For example, 4.262.1:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{3} x}{1+x} d x=-\frac{7 \pi^{4}}{120} \tag{6.7}
\end{equation*}
$$

using $\Gamma(4)=6$ and $\zeta(4)=\pi^{4} / 90$. Similarly, 4.264.1:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{5} x}{1+x} d x=-\frac{31 \pi^{6}}{252} \tag{6.8}
\end{equation*}
$$

uses $\Gamma(6)=120$ and $\zeta(6)=\pi^{6} / 945$. The final example of this form is 4.266.1:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{7} x}{1+x} d x=-\frac{127 \pi^{8}}{240} \tag{6.9}
\end{equation*}
$$

that employs $\Gamma(8)=5040$ and $\zeta(8)=\pi^{8} / 9450$. The next cases in this list would be

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{9} x}{1+x} d x=-\frac{511 \pi^{10}}{132} \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{11} x}{1+x} d x=-\frac{1414477 \pi^{12}}{32760} \tag{6.11}
\end{equation*}
$$

that do not appear in [3].
Example 6.2. The choice $a=2 n+1$ in (6.4) gives 4.271.1:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{2 n} x}{1+x} d x=\frac{2^{2 n}-1}{2^{2 n}}(2 n)!\zeta(2 n+1) . \tag{6.12}
\end{equation*}
$$

Example 6.3. The choice $a=2 n$ in (6.4) gives 4.271.2:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{2 n-1} x}{1+x} d x=-\frac{2^{2 n-1}-1}{2^{2 n-1}}(2 n-1)!\zeta(2 n), \tag{6.13}
\end{equation*}
$$

and using (1.3) gives

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln ^{2 n-1} x}{1+x} d x=-\frac{2^{2 n-1}-1}{2 n}\left|B_{2 n}\right| \pi^{2 n} \tag{6.14}
\end{equation*}
$$

7. Integrals over the whole line

The change of variables $x=\frac{1}{p} e^{-t}$ in (2.1) gives entry 3.333.1:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-s x} d x}{\exp \left(e^{-x}\right)-1}=\Gamma(s) \zeta(s) \tag{7.1}
\end{equation*}
$$

The same change of variable in (2.8) gives entry 3.333.2:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-s x} d x}{\exp \left(e^{-x}\right)+1}=\left(1-2^{1-s}\right) \Gamma(s) \zeta(s) . \tag{7.2}
\end{equation*}
$$

The exceptional case

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-x} d x}{\exp \left(e^{-x}\right)+1}=\ln 2 \tag{7.3}
\end{equation*}
$$

mentioned in entry 3.333.2, is elementary.
Acknowledgements. The work of the third author was partially supported by NSFDMS 0713836.

References

[1] G. Boros and V. Moll. Irresistible Integrals. Cambridge University Press, New York, 1st edition, 2004.
[2] H. Edwards. Riemann's zeta function. Academic Press, New York, 1974.
[3] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.
[4] B. Rooney, P. Borwein, S. Choi and A. Weirathmueller. The Riemann hypothesis. A resource for the afficionado and virtuoso alike. Canadian Mathematical Society, 1st edition, 2008.

Received 22032010 , revised 21072010
a Department of Mathematics,
Tulane University,
New Orleans, LA 70118
USA
E-mail address: tamdeberha@math.tulane.edu
E-mail address: vhm@math.tulane.edu
${ }^{\text {b }}$ Department of Mathematics, Ohio Northern University, Ada, OH 45810 USA

E-mail address: k-boyadzhiev@onu.edu

