SCIENTIA

Series A: Mathematical Sciences, Vol. ?? (2014), ??
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
(C) Universidad Técnica Federico Santa María 2014

The integrals in Gradshteyn and Ryzhik.
 Part 26: The exponential integral

K. Boyadzhiev and Victor H. Moll

Abstract

The table of Gradshteyn and Ryzhik contains many entries where the evaluation is given in terms of the exponential integral. A selection of these formulas are established.

1. Introduction

The exponential integral function is defined by

$$
\begin{equation*}
\operatorname{Ei}(x)=\int_{-\infty}^{x} \frac{e^{t}}{t} d t \tag{1.1}
\end{equation*}
$$

for $x<0$. In the case $x>0$ we use the Cauchy principal value

$$
\begin{equation*}
\operatorname{Ei}(x)=-\lim _{\epsilon \rightarrow 0^{+}}\left[\int_{-x}^{-\epsilon} \frac{e^{-t}}{t} d t+\int_{\epsilon}^{\infty} \frac{e^{-t}}{t} d t\right] \tag{1.2}
\end{equation*}
$$

This appears as entry 3.351.6 in [2]
Another function defined by an integral is the logarithmic integral:

$$
\begin{equation*}
\operatorname{li}(u):=\int_{0}^{u} \frac{d x}{\ln x} \tag{1.3}
\end{equation*}
$$

This is entry 4.211.2. The change of variables $t=\ln x$ shows that

$$
\begin{equation*}
\operatorname{li}(u)=\operatorname{Ei}(\ln u) \tag{1.4}
\end{equation*}
$$

Observe that the integral defining li diverges as $u \rightarrow \infty$. Indeed, entry 4.211.1 states that

$$
\begin{equation*}
\int_{e}^{\infty} \frac{d x}{\ln x}=+\infty \tag{1.5}
\end{equation*}
$$

2000 Mathematics Subject Classification. Primary 33.
Key words and phrases. Integrals.
The second author wishes to acknowledge the partial support of NSF-DMS 0713836.

This is evident from the change of variables $t=\ln x$ that yields

$$
\begin{equation*}
\int_{e}^{\infty} \frac{d x}{\ln x}=\int_{1}^{\infty} \frac{e^{t} d t}{t} \geqslant \int_{1}^{\infty} \frac{d t}{t}=\infty \tag{1.6}
\end{equation*}
$$

2. Some simple changes of variables

The change of variables $t=-a s$ yields

$$
\begin{equation*}
\int_{-x / a}^{\infty} \frac{e^{-a s}}{s} d s=-\operatorname{Ei}(x) . \tag{2.1}
\end{equation*}
$$

Replacing x by $a x$, this gives

$$
\begin{equation*}
\int_{-a x}^{\infty} \frac{e^{-t}}{t} d t=-\operatorname{Ei}(a x) \tag{2.2}
\end{equation*}
$$

The special choice $x=-a$ in (2.1) yields entry 3.351.5:

$$
\begin{equation*}
\int_{1}^{\infty} \frac{e^{-a s}}{s} d s=-\operatorname{Ei}(-a) . \tag{2.3}
\end{equation*}
$$

The expression

$$
\begin{equation*}
\operatorname{Ei}(-a)=-\int_{1}^{\infty} \frac{e^{-a s}}{s} d s \tag{2.4}
\end{equation*}
$$

is an analytic function of a for $\operatorname{Re} a>0$. This provides an analytic extension of $\operatorname{Ei}(z)$ to the left half plane $\operatorname{Re} z<0$. Several entries of [2] are derived from here.

Example 2.1. For any β such that $u+\beta>0$

$$
\begin{equation*}
\operatorname{Ei}(-a u-a \beta)=\operatorname{Ei}(-a(u+\beta))=-\int_{u+\beta}^{\infty} \frac{e^{-a x}}{x} d x \tag{2.5}
\end{equation*}
$$

and then the shift $x \mapsto x+\beta$ produces

$$
\begin{equation*}
\operatorname{Ei}(-a u-a \beta)=-e^{-a \beta} \int_{u}^{\infty} \frac{e^{-a x}}{x+\beta} d x \tag{2.6}
\end{equation*}
$$

that can be written as

$$
\begin{equation*}
\int_{u}^{\infty} \frac{e^{-a x}}{x+\beta} d x=-e^{a \beta} \operatorname{Ei}(-a u-a \beta) . \tag{2.7}
\end{equation*}
$$

This appears as entry $\mathbf{3 . 3 5 2 . 2}$. This representation is valid or $\beta \in \mathbb{C}$ outside the half-line $(-\infty, u]$.

Example 2.2. The special case $u=0$ and $\beta \notin(-\infty, 0]$ gives

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x}}{x+\beta} d x=-e^{a \beta} \operatorname{Ei}(-a \beta) \tag{2.8}
\end{equation*}
$$

This is entry $\mathbf{3 . 3 5 2 . 4}$ in [2].

Example 2.3. The difference of (2.7) and (2.8) produces

$$
\begin{equation*}
\int_{0}^{u} \frac{e^{-a x}}{x+\beta} d x=e^{a u}[\operatorname{Ei}(-a u-a \beta)-\operatorname{Ei}(-a \beta)] \tag{2.9}
\end{equation*}
$$

This is entry 3.352 .1 .
Example 2.4. Entry $\mathbf{3 . 3 5 2 . 3}$ states that

$$
\begin{equation*}
\int_{u}^{v} \frac{e^{-a x}}{x+\beta} d x=e^{a \beta}[\operatorname{Ei}(-a(v+\beta))-\operatorname{Ei}(-a(u+\beta))] . \tag{2.10}
\end{equation*}
$$

This comes directly from (2.7):

$$
\begin{align*}
\int_{u}^{v} \frac{e^{-a x} d x}{x+\beta} & =\int_{u}^{\infty} \frac{e^{-a x} d x}{x+\beta}-\int_{v}^{\infty} \frac{e^{-a x} d x}{x+\beta} \tag{2.11}\\
& =-e^{a \beta} \operatorname{Ei}(-a u-a \beta)+e^{a \beta} \operatorname{Ei}(-a v-a \beta) .
\end{align*}
$$

This is the result.
Example 2.5. In the expression (2.7), when $u>0$, the parameter β may be taken in the range $\beta<u$, so that $x-\beta>0$ for all $x \geqslant u$. This produces entry 3.352 .5

$$
\begin{equation*}
\int_{u}^{\infty} \frac{e^{-a x} d x}{x-\beta}=-e^{-a \beta} \operatorname{Ei}(-a(u-\beta)) \tag{2.12}
\end{equation*}
$$

Example 2.6. In the case $u=0$ and $\beta<0$, the entry in Example 2.5 can be written as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{\beta-x}=e^{-a \beta} \operatorname{Ei}(a \beta) . \tag{2.13}
\end{equation*}
$$

This is entry $\mathbf{3 . 3 5 2 . 6}$ in [2].

3. Entries obtained by differentiation

This section presents proofs of some entries in [2] obtained by manipulations of derivatives of the exponential integral function.

Example 3.1. Entry 3.353.3 is

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{(x+\beta)^{2}}=\frac{1}{\beta}+a e^{-a \beta} \operatorname{Ei}(-a \beta) . \tag{3.1}
\end{equation*}
$$

To establish this, differentiate (2.7) and use

$$
\begin{equation*}
\frac{d}{d t} \operatorname{Ei}(u)=\frac{e^{u}}{u} \frac{d u}{d t} \tag{3.2}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\int_{u}^{\infty} \frac{e^{-a x} d x}{(x+\beta)^{2}}=\frac{e^{-a u}}{u+\beta}+a e^{a \beta} \operatorname{Ei}(-a u-a \beta) \tag{3.3}
\end{equation*}
$$

The choice $u=0$ with $\operatorname{Re} \beta>0$ and $\operatorname{Re} a>0$ gives the result.

Example 3.2. Entry $\mathbf{3 . 3 5 3 . 1}$ states that

$$
\begin{equation*}
\int_{u}^{\infty} \frac{e^{-a x} d x}{(x+\beta)^{n}}=e^{-a u} \sum_{k=1}^{n-1} \frac{(k-1)!(-a)^{n-k-1}}{(n-1)!(u+\beta)^{k}}-\frac{(-a)^{n-1}}{(n-1)!} e^{a \beta} \operatorname{Ei}(-a u-a \beta) \tag{3.4}
\end{equation*}
$$

can be easily established by induction. The initial step $n=2$ is (3.3). Simply differentiate (3.4) with respect to β to move from n to $n+1$. The details are left to the reader.

Example 3.3. The special case $u=0$ of (3.4) gives

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{(x+\beta)^{n}}=\sum_{k=1}^{n-1} \frac{(k-1)!(-a)^{n-k-1}}{(n-1)!\beta^{k}}-\frac{(-a)^{n-1}}{(n-1)!} e^{a \beta} \operatorname{Ei}(-a \beta) \tag{3.5}
\end{equation*}
$$

This is entry $\mathbf{3 . 3 5 3 . 2}$ in [2].
Example 3.4. Entry $\mathbf{3 . 3 5 1 . 4}$ states that

$$
\begin{equation*}
\int_{u}^{\infty} \frac{e^{-a x} d x}{x^{n+1}}=e^{-a u} \sum_{k=1}^{n} \frac{(k-1)!(-a)^{n-k}}{n!u^{k}}+(-1)^{n+1} \frac{a^{n}}{n!} \operatorname{Ei}(-a u) . \tag{3.6}
\end{equation*}
$$

This results follows directly from (3.4) by taking $\beta=0$ and $u>0$ and then replacing n by $n+1$. Changing the index of summation $k \mapsto n-k$, this may be written as it appears in [2]

$$
\begin{equation*}
\int_{u}^{\infty} \frac{e^{-a x} d x}{x^{n+1}}=\frac{e^{-a u}}{u^{n}} \sum_{k=1}^{n} \frac{(-1)^{k} a^{k} u^{k}}{n(n-1) \cdots(n-k)}+(-1)^{n+1} \frac{a^{n}}{n!} \operatorname{Ei}(-a u) \tag{3.7}
\end{equation*}
$$

Example 3.5. Entry 3.353.5 states that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{n} e^{-a x}}{x+\beta} d x=(-1)^{n-1} \beta^{n} e^{a \beta} \operatorname{Ei}(-a \beta)+\sum_{k=1}^{n}(k-1)!(-\beta)^{n-k} \mu^{-k} \tag{3.8}
\end{equation*}
$$

In the special case $n=1$, this reduces to

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-a x}}{x+\beta} d x=\beta e^{a \beta} \operatorname{Ei}(-a \beta)+\frac{1}{a} \tag{3.9}
\end{equation*}
$$

which follows by differentiating (2.8) with respect to a. The general formula (3.8) is obtained directly by further differentiation.

Note 3.6. The entry $\mathbf{3 . 3 5 3 . 4}$

$$
\begin{equation*}
\int_{0}^{1} \frac{x e^{x} d x}{(x+1)^{2}}=\frac{e}{2}-1 \tag{3.10}
\end{equation*}
$$

which does not involve the exponential integral function, can be evaluated by simply integration by parts. This entry has been included in Section 10 of [1].

4. Entries with quadratic denominators

This section considers the entries in [2] where the integrand is an exponential term divided by a quadratic polynomial.

Example 4.1. Entry 3.354.3 is

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{\beta^{2}-x^{2}}=\frac{1}{2 \beta}\left[e^{-a \beta} \operatorname{Ei}(a \beta)-e^{a \beta} \operatorname{Ei}(-a \beta)\right] \tag{4.1}
\end{equation*}
$$

To evaluate this integral, assume $\beta \notin \mathbb{R}$ and use the partial fraction decomposition

$$
\begin{equation*}
\frac{1}{\beta^{2}-x^{2}}=\frac{1}{2 \beta}\left(\frac{1}{\beta-x}-\frac{1}{\beta+x}\right) \tag{4.2}
\end{equation*}
$$

to obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{\beta^{2}-x^{2}}=\frac{1}{2 \beta}\left(\int_{0}^{\infty} \frac{e^{-a x} d x}{\beta-x}+\int_{0}^{\infty} \frac{e^{-a x} d x}{\beta+x}\right) \tag{4.3}
\end{equation*}
$$

and now the result comes from (2.8) and (2.13). For $\beta \in \mathbb{R}$ the results valid as a Cauchy principal value integral.

Example 4.2. Differentiate (4.1) with respect to a produces

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-a x} d x}{\beta^{2}-x^{2}}=\frac{1}{2}\left[e^{-a \beta} \operatorname{Ei}(a \beta)-e^{a \beta} \operatorname{Ei}(-a \beta)\right] \tag{4.4}
\end{equation*}
$$

This appears as entry 3.354.4 in [2].
Example 4.3. Entry 3.354.1

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{\beta^{2}+x^{2}}=\frac{1}{\beta}[\operatorname{ci}(a \beta) \sin a \beta-\operatorname{si}(a \beta) \cos a \beta] \tag{4.5}
\end{equation*}
$$

involves the cosine and sine integrals defined by

$$
\begin{equation*}
\operatorname{ci}(u)=-\int_{u}^{\infty} \frac{\cos t}{t} d t \text { and } \operatorname{si}(u)=-\int_{u}^{\infty} \frac{\sin t}{t} d t \tag{4.6}
\end{equation*}
$$

Start by replacing β by $i \beta$ in (4.1) to obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{\beta^{2}+x^{2}}=\frac{1}{2 i \beta}\left[e^{i a \beta} \operatorname{Ei}(-i a \beta)-e^{-i a \beta} \operatorname{Ei}(i a \beta)\right] \tag{4.7}
\end{equation*}
$$

The classical identity of Euler

$$
\begin{equation*}
e^{ \pm i \beta}=\cos a \beta \pm i \sin a \beta \tag{4.8}
\end{equation*}
$$

gives the relation

$$
\begin{equation*}
\operatorname{Ei}(\pm i a \beta)=\operatorname{ci}(a \beta) \pm i \operatorname{si}(a \beta) \tag{4.9}
\end{equation*}
$$

Replacing in (4.7) gives the result.
Example 4.4. Differentiation of the entry in Example 4.3 gives

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-a x} d x}{\beta^{2}+x^{2}}=-\operatorname{ci}(a \beta) \sin a \beta-\operatorname{si}(a \beta) \cos a \beta \tag{4.10}
\end{equation*}
$$

This is entry $\mathbf{3 . 3 5 4 . 2}$ in [2].

The entries in Sections 3.355 and $\mathbf{3 . 3 5 6}$ are obtained by differentiation of the entries in Section $\mathbf{3 . 3 5 4}$ given above.

Example 4.5. Entry 3.355.1 is

$$
\begin{array}{r}
\int_{0}^{\infty} \frac{e^{-a x} d x}{\left(\beta^{2}+x^{2}\right)^{2}}=\frac{1}{2 \beta^{2}}\{\operatorname{ci}(a \beta) \sin (a \beta)-\operatorname{si}(a \beta) \cos (a \beta)- \tag{4.11}\\
a \beta[\operatorname{ci}(a \beta) \cos (a \beta)+\operatorname{si}(a \beta) \sin (a \beta)]\}
\end{array}
$$

This is obtained by differentiation of Entry $\mathbf{3 . 3 5 4 . 1}$ given in (4.5).
Example 4.6. Entry 3.355.2 is

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-a x} d x}{\left(\beta^{2}+x^{2}\right)^{2}}=\frac{1}{2 \beta^{2}}[1-a \beta(\operatorname{ci}(a \beta) \sin (a \beta)-\operatorname{si}(a \beta) \cos (a \beta))] \tag{4.12}
\end{equation*}
$$

This entry appeared with a typo in [2]. This entry is obtained by direct differentiation of (4.11).

Example 4.7. Differentiation of entries $\mathbf{3 . 3 5 4 . 3}$ and $\mathbf{3 . 3 5 4 . 4}$ produce

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{\left(\beta^{2}-x^{2}\right)^{2}}=\frac{1}{4 \beta^{3}}\left[(a \beta-1) e^{a \beta} \operatorname{Ei}(-a \beta)+(1+a \beta) e^{-a \beta} \operatorname{Ei}(a \beta)\right] \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x e^{-a x} d x}{\left(\beta^{2}-x^{2}\right)^{2}}=\frac{1}{4 \beta^{2}}\left[-2+a \beta\left(e^{-a \beta} \operatorname{Ei}(a \beta)-e^{a \beta} \operatorname{Ei}(-a \beta)\right]\right) \tag{4.14}
\end{equation*}
$$

These are entries 3.355.3 and 3.355.4, respectively.
Example 4.8. Differentiating (4.5) $2 n$-times with respect to a, gives

$$
\begin{align*}
\int_{0}^{\infty} \frac{x^{2 n} e^{-a x} d x}{\beta^{2}+x^{2}}= & (-1)^{n-1} \beta^{2 n}[\operatorname{ci}(a \beta) \cos (a \beta)+\operatorname{si}(a \beta) \sin (a \beta)]+ \tag{4.15}\\
& +\frac{1}{\beta^{2 n}} \sum_{k=1}^{n}(2 n-2 k+1)!\left(-a^{2} \beta^{2}\right)^{k-1}
\end{align*}
$$

This appears as Entry 3.356.2. The identity

$$
\begin{align*}
\int_{0}^{\infty} \frac{x^{2 n} e^{-a x} d x}{\beta^{2}-x^{2}}= & \frac{1}{2} \beta^{2 n-1}\left[e^{-a \beta} \operatorname{Ei}(a \beta)-e^{a \beta} \operatorname{Ei}(-a \beta)\right] \tag{4.16}\\
& -\frac{1}{\beta^{2 n-1}} \sum_{k=1}^{n}(2 n-2 k)!\left(a^{2} \beta^{2}\right)^{k-1}
\end{align*}
$$

is obtained by differentiating (4.1). This appears as Entry 3.356.4.
Example 4.9. The entries 3.356.1

$$
\begin{align*}
\int_{0}^{\infty} \frac{x^{2 n+1} e^{-a x} d x}{\beta^{2}+x^{2}}= & (-1)^{n-1} \beta^{2 n}[\operatorname{ci}(a \beta) \cos a \beta+\operatorname{si}(a \beta) \sin a \beta] \tag{4.17}\\
& +\frac{1}{a^{2 n}} \sum_{k=1}^{n}(2 n-2 k+1)!\left(-a^{2} \beta^{2}\right)^{k-1}
\end{align*}
$$

and entry 3.356.3

$$
\begin{align*}
\int_{0}^{\infty} \frac{x^{2 n+1} e^{-a x} d x}{\beta^{2}-x^{2}}= & \frac{1}{2} \beta^{2 n}\left[e^{a \beta} \operatorname{Ei}(-a \beta)+e^{-a \beta} \operatorname{Ei}(a \beta)\right] \tag{4.18}\\
& -\frac{1}{a^{2 n}} \sum_{k=1}^{n}(2 n-2 k+1)!\left(a^{2} \beta^{2}\right)^{k-1}
\end{align*}
$$

are obtained by differentiating the entries in Example 4.8.

5. Some higher degree denominators

This section evaluates a series of entries in [2] where the integrand is an exponential times a rational function with denominator of degree larger than 2 .

Example 5.1. Entry 3.358.1 is

$$
\begin{align*}
\int_{0}^{\infty} & \frac{e^{-a x} d x}{\beta^{4}-x^{4}}= \tag{5.1}\\
& \frac{1}{4 \beta^{3}}\left\{e^{-a \beta} \operatorname{Ei}(a \beta)-e^{a \beta} \operatorname{Ei}(-a \beta)+2 \operatorname{ci}(a \beta) \sin (a \beta)-2 \operatorname{si}(a \beta) \cos (a \beta)\right\}
\end{align*}
$$

Start with the partial fraction decomposition

$$
\begin{equation*}
\frac{1}{\beta^{4}-x^{4}}=\frac{1}{2 \beta^{2}}\left(\frac{1}{\beta^{2}-x^{2}}+\frac{1}{\beta^{2}+x^{2}}\right) \tag{5.2}
\end{equation*}
$$

which shows that the integral in question is a combination of (4.1) and (4.5). The result follows from here.

Example 5.2. Entry 3.358.2

$$
\begin{align*}
\int_{0}^{\infty} & \frac{x e^{-a x} d x}{\beta^{4}-x^{4}}= \tag{5.3}\\
& \frac{1}{4 \beta^{2}}\left\{e^{a \beta} \operatorname{Ei}(-a \beta)+e^{-a \beta} \operatorname{Ei}(a \beta)-2 \operatorname{ci}(a \beta) \cos (a \beta)-2 \operatorname{si}(a \beta) \sin (a \beta)\right\}
\end{align*}
$$

This is obtained by differentiation of (5.1). The entries $\mathbf{3 . 3 5 8 . 3}$

$$
\begin{align*}
& \int_{0}^{\infty} \frac{x^{2} e^{-a x} d x}{\beta^{4}-x^{4}}= \tag{5.4}\\
& \quad \frac{1}{4 \beta}\left\{e^{-a \beta} \operatorname{Ei}(a \beta)-e^{a \beta} \operatorname{Ei}(-a \beta)-2 \operatorname{ci}(a \beta) \sin (a \beta)+2 \operatorname{si}(a \beta) \cos (a \beta)\right\}
\end{align*}
$$

and 3.358.4

$$
\begin{align*}
& \int_{0}^{\infty} \frac{x^{3} e^{-a x} d x}{\beta^{4}-x^{4}}= \tag{5.5}\\
& \quad \frac{1}{4}\left\{e^{a \beta} \operatorname{Ei}(-a \beta)+e^{-a \beta} \operatorname{Ei}(a \beta)+2 \operatorname{ci}(a \beta) \cos (a \beta)+2 \operatorname{si}(a \beta) \sin (a \beta)\right\}
\end{align*}
$$

come from further differentiation.

The entries in Section $\mathbf{3 . 3 5 7}$ can be established by algebraic manipulations of the examples given above.

Example 5.3. Entry $\mathbf{3 . 3 5 7 . 1}$ states that

$$
\begin{align*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{\beta^{3}+\beta^{2} x+\beta x^{2}+x^{3}}= & \frac{1}{2 \beta^{2}}\{\operatorname{ci}(a \beta)(\sin a \beta+\cos (a \beta))+ \tag{5.6}\\
& \left.\operatorname{si}(a \beta)(\sin a \beta-\cos (a \beta))-e^{a \beta} \operatorname{Ei}(-a \beta)\right\}
\end{align*}
$$

This formula is obtained from (5.1) and (5.3) and the algebraic identity

$$
\begin{equation*}
\frac{1}{\beta^{3}+\beta^{2} x+\beta x^{2}+x^{3}}=\frac{\beta-x}{\beta^{4}-x^{4}} . \tag{5.7}
\end{equation*}
$$

Example 5.4. Differentiation of (5.6) gives
(5.8) $\int_{0}^{\infty} \frac{x e^{-a x} d x}{\beta^{3}+\beta^{2} x+\beta x^{2}+x^{3}}=\frac{1}{2 \beta}\{\operatorname{ci}(a \beta)(\sin a \beta-\cos (a \beta))$

$$
\left.-\operatorname{si}(a \beta)(\sin a \beta+\cos (a \beta))-e^{a \beta} \operatorname{Ei}(-a \beta)\right\}
$$

This is entry $\mathbf{3 . 3 5 7 . 2}$ in [2].
Example 5.5. Differentiating (5.8) produces entry 3.357.3:

$$
\begin{align*}
\int_{0}^{\infty} \frac{x^{2} e^{-a x} d x}{\beta^{3}+\beta^{2} x+\beta x^{2}+x^{3}}= & \frac{1}{2}\{-\operatorname{ci}(a \beta)(\sin a \beta+\cos (a \beta)) \tag{5.9}\\
& \left.-\operatorname{si}(a \beta)(\sin a \beta-\cos (a \beta))-e^{a \beta} \operatorname{Ei}(-a \beta)\right\}
\end{align*}
$$

The identity

$$
\begin{equation*}
\frac{1}{\beta^{3}-\beta^{2} x+\beta x^{2}-x^{3}}=\frac{\beta+x}{\beta^{4}-x^{4}} \tag{5.10}
\end{equation*}
$$

and the method used to establish the last three entries produces proofs of the next three.

Example 5.6. Entry 3.357.4 is

$$
\begin{align*}
\int_{0}^{\infty} \frac{e^{-a x} d x}{\beta^{3}-\beta^{2} x+\beta x^{2}-x^{3}}= & \frac{1}{2 \beta^{2}}\{\operatorname{ci}(a \beta)(\sin a \beta-\cos (a \beta)) \tag{5.11}\\
& \left.-\operatorname{si}(a \beta)(\sin a \beta+\cos (a \beta))+e^{-a \beta} \operatorname{Ei}(a \beta)\right\}
\end{align*}
$$

and $\mathbf{3 . 3 5 7 . 5}$ is

$$
\begin{align*}
\int_{0}^{\infty} \frac{x e^{-a x} d x}{\beta^{3}-\beta^{2} x+\beta x^{2}-x^{3}}= & \frac{1}{2 \beta}\{-\operatorname{ci}(a \beta)(\sin a \beta+\cos (a \beta)) \tag{5.12}\\
& \left.-\operatorname{si}(a \beta)(\sin a \beta-\cos (a \beta))+e^{-a \beta} \operatorname{Ei}(a \beta)\right\}
\end{align*}
$$

and, finally, entry 3.357 .6 is

$$
\begin{align*}
\int_{0}^{\infty} \frac{x^{2} e^{-a x} d x}{\beta^{3}-\beta^{2} x+\beta x^{2}-x^{3}}= & \frac{1}{2}\{\operatorname{ci}(a \beta)(\cos a \beta-\sin (a \beta)) \tag{5.13}\\
& \left.+\operatorname{si}(a \beta)(\cos a \beta+\sin (a \beta))+e^{-a \beta} \operatorname{Ei}(a \beta)\right\}
\end{align*}
$$

6. Entries involving absolute values

This section presents the evaluation of some entries in [2] where the integrand contains variations of the function $\ln |x|$.

Example 6.1. Entry 4.337 .3 states that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\mu x} \ln |a-x| d x=\frac{1}{\mu}\left[\ln a-e^{-a \mu} \operatorname{Ei}(a \mu)\right] . \tag{6.1}
\end{equation*}
$$

To establish this entry observe that the singularity at $x=a$ is integrable and that

$$
\begin{equation*}
\frac{d}{d x} \ln |a-x|=\frac{1}{a-x} \tag{6.2}
\end{equation*}
$$

Integration by parts produces

$$
\begin{aligned}
\int_{0}^{\infty} e^{-\mu x} \ln |a-x| d x & =-\frac{1}{\mu} \int_{0}^{\infty} \ln |x-a| d e^{-\mu x} \\
& =-\frac{1}{\mu}\left(-\log a-e^{-\mu a} \int_{0}^{\infty} \frac{e^{-\mu x}}{x-a} d x\right) \\
& =\frac{1}{\mu}\left(\ln a+e^{-\mu t} \int_{-\mu a}^{\infty} \frac{e^{-u}}{u} d u\right) \\
& =\frac{1}{\mu}\left(\ln a-e^{-\mu a} \operatorname{Ei}(\mu a)\right) .
\end{aligned}
$$

This is the result.
Example 6.2. Entry 4.337.4 states that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\mu x} \ln \left|\frac{\beta}{\beta-x}\right| d x=\frac{1}{\mu} e^{-\beta \mu} \operatorname{Ei}(\beta \mu) . \tag{6.3}
\end{equation*}
$$

This evaluation is obtained directly from (6.1) and the identity

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\mu x} \ln \left|\frac{\beta}{\beta-x}\right| d x=\ln |\beta| \int_{0}^{\infty} e^{-\mu x} d x-\int_{0}^{\infty} e^{-\mu x} \ln |\beta-x| d x \tag{6.4}
\end{equation*}
$$

7. Some integrals involving the logarithm function

The exponential integral function Ei allows the evaluation of a variety of entries in [2] containing a logarithmic term. For instance 4.212.1:

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{a+\ln x}=e^{-a} \operatorname{Ei}(a) \tag{7.1}
\end{equation*}
$$

follows from the change of variables $t=a+\ln x$. Similarly, 4.212.2:

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{a-\ln x}=-e^{a} \operatorname{Ei}(-a) \tag{7.2}
\end{equation*}
$$

is evaluated using $t=a-\ln x$.

We now consider the family

$$
\begin{equation*}
f_{n}(a):=\int_{0}^{1} \frac{d x}{(a+\ln x)^{n}} . \tag{7.3}
\end{equation*}
$$

The change of variables $t=a+\ln x$ gives

$$
\begin{equation*}
f_{n}(a)=e^{-a} \int_{-\infty}^{a} t^{-n} e^{t} d t \tag{7.4}
\end{equation*}
$$

Integrate by parts to produce

$$
\begin{equation*}
\int_{-\infty}^{a} \frac{e^{t} d t}{t^{n}}=\frac{e^{a} a^{1-n}}{1-n}-\frac{1}{1-n} \int_{-\infty}^{a} \frac{e^{t} d t}{t^{n-1}} \tag{7.5}
\end{equation*}
$$

This yields a recurrence for the integrals $f_{n}(a)$:

$$
\begin{equation*}
f_{n}(a)=-\frac{a^{1-n}}{n-1}+\frac{1}{n-1} f_{n-1}(a) . \tag{7.6}
\end{equation*}
$$

The initial value is given in 4.212 .1 . From here we deduce and prove by induction, formula 4.212.8:

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{(a+\ln x)^{n}}=\frac{e^{-a}}{(n-1)!} \operatorname{Ei}(a)-\frac{1}{(n-1)!} \sum_{k=1}^{n-1} \frac{(n-k-1)!}{a^{n-k}} \tag{7.7}
\end{equation*}
$$

Using (7.4) we obtain 3.351.4:

$$
\begin{equation*}
\int_{a}^{\infty} \frac{e^{-p x} d x}{x^{n+1}}=\frac{(-1)^{n+1} p^{n}}{n!} \operatorname{Ei}(-a p)+\frac{e^{-a p}}{a^{n} n!} \sum_{k=0}^{n-1}(-1)^{k} p^{k} a^{k}(n-k-1)! \tag{7.8}
\end{equation*}
$$

The integral 4.212.3:

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{(a+\ln x)^{2}}=-\frac{1}{a}+e^{-a} \operatorname{Ei}(a) \tag{7.9}
\end{equation*}
$$

is the special case $n=2$ of (7.7). The integral 4.212.5:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln x d x}{(a+\ln x)^{2}}=1+(1-a) e^{-a} \operatorname{Ei}(a) \tag{7.10}
\end{equation*}
$$

can be obtained from

$$
\begin{equation*}
\frac{\ln x}{(a+\ln x)^{2}}=\frac{1}{a+\ln x}-\frac{a}{(a+\ln x)^{2}} \tag{7.11}
\end{equation*}
$$

Similar arguments produce 4.212.9:

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{(a+\ln x)^{n}}=\frac{(-1)^{n} e^{a} \operatorname{Ei}(-a)}{(n-1)!}+\frac{(-1)^{n-1}}{(n-1)!} \sum_{k=1}^{n-1}(n-k-1)!(-a)^{k-n} \tag{7.12}
\end{equation*}
$$

The formula 4.212.4:

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{(a-\ln x)^{2}}=\frac{1}{a}+e^{a} \operatorname{Ei}(-a) \tag{7.13}
\end{equation*}
$$

is the special case $n=2$. Writing

$$
\begin{equation*}
\ln x=a-(a-\ln x) \tag{7.14}
\end{equation*}
$$

we obtain the evaluation of $\mathbf{4 . 2 1 2}$.6:

$$
\begin{equation*}
\int_{0}^{1} \frac{\ln x d x}{(a-\ln x)^{2}}=1+(1+a) e^{a} \operatorname{Ei}(-a) . \tag{7.15}
\end{equation*}
$$

8. The exponential scale

Several of the entries in [2] contain integrals that can be reduced to the definition of the exponential integral. This section contains some of them.

Example 8.1. Entry 4.331.2 states that

$$
\begin{equation*}
\int_{1}^{\infty} e^{-\mu x} \ln x d x=-\frac{1}{\mu} \operatorname{Ei}(-\mu), \text { for } \operatorname{Re} \mu>0 \tag{8.1}
\end{equation*}
$$

To evaluate this entry, assume $\mu>0$ and integrate by parts to obtain

$$
\begin{equation*}
\int_{1}^{\infty} e^{-\mu x} \ln x d x=\frac{1}{\mu} \int_{1}^{\infty} \frac{e^{-\mu x}}{x} d x \tag{8.2}
\end{equation*}
$$

The change of variables $s=-\mu x$ now gives the result for $\mu \in \mathbb{R}$. The case $\mu \in \mathbb{C}$ follows by analytic continuation.

Example 8.2. Entry 4.337.1

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\mu x} \ln (\beta+x) d x=\frac{1}{\mu}\left[\ln \beta-e^{\mu \beta} \operatorname{Ei}(-\beta \mu)\right], \text { for }|\arg \beta|<\pi, \operatorname{Re} \mu>0 \tag{8.3}
\end{equation*}
$$

can be transformed to 4.331 .2 by simple changes of variables. Start with $\beta>0$ and make the change of variables $x=\beta t$ to obtain

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\mu x} \ln (\beta+x) d x=\frac{\ln \beta}{\mu}+\beta \int_{0}^{\infty} e^{-\mu \beta t} \ln (1+t) d t \tag{8.4}
\end{equation*}
$$

The change of variables $s=t+1$ and Entry 4.331.2 gives the result.
Example 8.3. Entry 4.337.2 is

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\mu x} \ln (1+\beta x) d x=-\frac{1}{\mu} e^{\mu / \beta} \operatorname{Ei}(-\mu / \beta) \tag{8.5}
\end{equation*}
$$

The change of variables $t=\beta x$ reduces this integral to 4.337 .1 with $\mu \mapsto \mu / \beta$ and $\beta \mapsto 1$.

The change of variables $t=-a e^{n u}$ produces

$$
\begin{equation*}
\operatorname{Ei}(x)=-n \int_{c}^{\infty} \exp \left(-a e^{n u}\right) d u \tag{8.6}
\end{equation*}
$$

where $c=\frac{1}{n} \ln (-x / a)$. The choice $x=-a$ produces

$$
\begin{equation*}
\operatorname{Ei}(-a)=-n \int_{0}^{\infty} \exp \left(-a e^{n u}\right) \tag{8.7}
\end{equation*}
$$

This appears as $\mathbf{3 . 3 2 7}$ in [2].

Some further examples of entries in [2], containing the exponential integral function, will be described in a future publication.
Acknowledgments. The second author acknowledges the partial support of NSF-DMS 0713836.

References

[1] T. Amdeberhan and V. Moll. The integrals in Gradshteyn and Ryzhik. Part 7: Elementary examples. Scientia, 16:25-40, 2008.
[2] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.

Departament of Mathematics, Ohio Northern University, Ada, OH 45810
E-mail address: k-boyadzhiev@onu.edu
Department of Mathematics, Tulane University, New Orleans, LA 70118
E-mail address: vhm@math.tulane.edu

Departamento de Matemática
Universidad Técnica Federico Santa María
Casilla 110-V,
Valparaíso, Chile

