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The integrals in Gradshteyn and Ryzhik.
Part 26: The exponential integral

K. Boyadzhiev and Victor H. Moll

Abstract. The table of Gradshteyn and Ryzhik contains many entries where

the evaluation is given in terms of the exponential integral. A selection of these

formulas are established.

1. Introduction

The exponential integral function is defined by

(1.1) Ei(x) =

∫ x

−∞

et

t
dt

for x < 0. In the case x > 0 we use the Cauchy principal value

(1.2) Ei(x) = − lim
ε→0+

[∫ −ε
−x

e−t

t
dt+

∫ ∞
ε

e−t

t
dt

]
.

This appears as entry 3.351.6 in [2]

Another function defined by an integral is the logarithmic integral:

(1.3) li(u) :=

∫ u

0

dx

lnx
.

This is entry 4.211.2. The change of variables t = lnx shows that

(1.4) li(u) = Ei(lnu).

Observe that the integral defining li diverges as u→∞. Indeed, entry 4.211.1 states
that

(1.5)

∫ ∞
e

dx

lnx
= +∞
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This is evident from the change of variables t = lnx that yields

(1.6)

∫ ∞
e

dx

lnx
=

∫ ∞
1

et dt

t
>
∫ ∞

1

dt

t
=∞.

2. Some simple changes of variables

The change of variables t = −as yields

(2.1)

∫ ∞
−x/a

e−as

s
ds = −Ei(x).

Replacing x by ax, this gives

(2.2)

∫ ∞
−ax

e−t

t
dt = −Ei(ax).

The special choice x = −a in (2.1) yields entry 3.351.5:

(2.3)

∫ ∞
1

e−as

s
ds = −Ei(−a).

The expression

(2.4) Ei(−a) = −
∫ ∞

1

e−as

s
ds

is an analytic function of a for Re a > 0. This provides an analytic extension of Ei(z)
to the left half plane Re z < 0. Several entries of [2] are derived from here.

Example 2.1. For any β such that u+ β > 0

(2.5) Ei(−au− aβ) = Ei(−a(u+ β)) = −
∫ ∞
u+β

e−ax

x
dx

and then the shift x 7→ x+ β produces

(2.6) Ei(−au− aβ) = −e−aβ
∫ ∞
u

e−ax

x+ β
dx

that can be written as

(2.7)

∫ ∞
u

e−ax

x+ β
dx = −eaβEi(−au− aβ).

This appears as entry 3.352.2. This representation is valid or β ∈ C outside the
half-line (−∞, u].

Example 2.2. The special case u = 0 and β 6∈ (−∞, 0] gives

(2.8)

∫ ∞
0

e−ax

x+ β
dx = −eaβEi(−aβ).

This is entry 3.352.4 in [2].
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Example 2.3. The difference of (2.7) and (2.8) produces

(2.9)

∫ u

0

e−ax

x+ β
dx = eau [Ei(−au− aβ)− Ei(−aβ)] .

This is entry 3.352.1.

Example 2.4. Entry 3.352.3 states that

(2.10)

∫ v

u

e−ax

x+ β
dx = eaβ [Ei(−a(v + β))− Ei(−a(u+ β))] .

This comes directly from (2.7):∫ v

u

e−ax dx

x+ β
=

∫ ∞
u

e−ax dx

x+ β
−
∫ ∞
v

e−ax dx

x+ β
(2.11)

= −eaβEi(−au− aβ) + eaβEi(−av − aβ).

This is the result.

Example 2.5. In the expression (2.7), when u > 0, the parameter β may be
taken in the range β < u, so that x−β > 0 for all x > u. This produces entry 3.352.5

(2.12)

∫ ∞
u

e−ax dx

x− β
= −e−aβEi(−a(u− β)).

Example 2.6. In the case u = 0 and β < 0, the entry in Example 2.5 can be
written as

(2.13)

∫ ∞
0

e−ax dx

β − x
= e−aβEi(aβ).

This is entry 3.352.6 in [2].

3. Entries obtained by differentiation

This section presents proofs of some entries in [2] obtained by manipulations of
derivatives of the exponential integral function.

Example 3.1. Entry 3.353.3 is

(3.1)

∫ ∞
0

e−ax dx

(x+ β)2
=

1

β
+ ae−aβEi(−aβ).

To establish this, differentiate (2.7) and use

(3.2)
d

dt
Ei(u) =

eu

u

du

dt

to obtain

(3.3)

∫ ∞
u

e−ax dx

(x+ β)2
=

e−au

u+ β
+ aeaβEi(−au− aβ).

The choice u = 0 with Reβ > 0 and Re a > 0 gives the result.
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Example 3.2. Entry 3.353.1 states that

(3.4)

∫ ∞
u

e−ax dx

(x+ β)n
= e−au

n−1∑
k=1

(k − 1)!(−a)n−k−1

(n− 1)!(u+ β)k
− (−a)n−1

(n− 1)!
eaβEi(−au− aβ).

can be easily established by induction. The initial step n = 2 is (3.3). Simply differ-
entiate (3.4) with respect to β to move from n to n + 1. The details are left to the
reader.

Example 3.3. The special case u = 0 of (3.4) gives

(3.5)

∫ ∞
0

e−ax dx

(x+ β)n
=

n−1∑
k=1

(k − 1)!(−a)n−k−1

(n− 1)!βk
− (−a)n−1

(n− 1)!
eaβEi(−aβ).

This is entry 3.353.2 in [2].

Example 3.4. Entry 3.351.4 states that

(3.6)

∫ ∞
u

e−ax dx

xn+1
= e−au

n∑
k=1

(k − 1)!(−a)n−k

n!uk
+ (−1)n+1 a

n

n!
Ei(−au).

This results follows directly from (3.4) by taking β = 0 and u > 0 and then replacing
n by n + 1. Changing the index of summation k 7→ n − k, this may be written as it
appears in [2]

(3.7)

∫ ∞
u

e−ax dx

xn+1
=
e−au

un

n∑
k=1

(−1)kakuk

n(n− 1) · · · (n− k)
+ (−1)n+1 a

n

n!
Ei(−au).

Example 3.5. Entry 3.353.5 states that

(3.8)

∫ ∞
0

xne−ax

x+ β
dx = (−1)n−1βneaβEi(−aβ) +

n∑
k=1

(k − 1)!(−β)n−kµ−k.

In the special case n = 1, this reduces to

(3.9)

∫ ∞
0

xe−ax

x+ β
dx = βeaβEi(−aβ) +

1

a

which follows by differentiating (2.8) with respect to a. The general formula (3.8) is
obtained directly by further differentiation.

Note 3.6. The entry 3.353.4

(3.10)

∫ 1

0

xex dx

(x+ 1)2
=
e

2
− 1,

which does not involve the exponential integral function, can be evaluated by simply
integration by parts. This entry has been included in Section 10 of [1].
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4. Entries with quadratic denominators

This section considers the entries in [2] where the integrand is an exponential term
divided by a quadratic polynomial.

Example 4.1. Entry 3.354.3 is

(4.1)

∫ ∞
0

e−ax dx

β2 − x2
=

1

2β

[
e−aβEi(aβ)− eaβEi(−aβ)

]
.

To evaluate this integral, assume β 6∈ R and use the partial fraction decomposition

(4.2)
1

β2 − x2
=

1

2β

(
1

β − x
− 1

β + x

)
to obtain

(4.3)

∫ ∞
0

e−ax dx

β2 − x2
=

1

2β

(∫ ∞
0

e−ax dx

β − x
+

∫ ∞
0

e−ax dx

β + x

)
and now the result comes from (2.8) and (2.13). For β ∈ R the results valid as a
Cauchy principal value integral.

Example 4.2. Differentiate (4.1) with respect to a produces

(4.4)

∫ ∞
0

xe−ax dx

β2 − x2
=

1

2

[
e−aβEi(aβ)− eaβEi(−aβ)

]
.

This appears as entry 3.354.4 in [2].

Example 4.3. Entry 3.354.1

(4.5)

∫ ∞
0

e−ax dx

β2 + x2
=

1

β
[ci(aβ) sin aβ − si(aβ) cos aβ]

involves the cosine and sine integrals defined by

(4.6) ci(u) = −
∫ ∞
u

cos t

t
dt and si(u) = −

∫ ∞
u

sin t

t
dt.

Start by replacing β by iβ in (4.1) to obtain

(4.7)

∫ ∞
0

e−ax dx

β2 + x2
=

1

2iβ

[
eiaβEi(−iaβ)− e−iaβEi(iaβ)

]
.

The classical identity of Euler

(4.8) e±iβ = cos aβ ± i sin aβ

gives the relation

(4.9) Ei(±iaβ) = ci(aβ)± i si(aβ).

Replacing in (4.7) gives the result.

Example 4.4. Differentiation of the entry in Example 4.3 gives

(4.10)

∫ ∞
0

xe−ax dx

β2 + x2
= −ci(aβ) sin aβ − si(aβ) cos aβ.

This is entry 3.354.2 in [2].
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The entries in Sections 3.355 and 3.356 are obtained by differentiation of the
entries in Section 3.354 given above.

Example 4.5. Entry 3.355.1 is∫ ∞
0

e−ax dx

(β2 + x2)2
=

1

2β2
{ci(aβ) sin(aβ)− si(aβ) cos(aβ)−(4.11)

aβ [ci(aβ) cos(aβ) + si(aβ) sin(aβ)]} .
This is obtained by differentiation of Entry 3.354.1 given in (4.5).

Example 4.6. Entry 3.355.2 is

(4.12)

∫ ∞
0

xe−ax dx

(β2 + x2)2
=

1

2β2
[1− aβ (ci(aβ) sin(aβ)− si(aβ) cos(aβ))] .

This entry appeared with a typo in [2]. This entry is obtained by direct differentiation
of (4.11).

Example 4.7. Differentiation of entries 3.354.3 and 3.354.4 produce

(4.13)

∫ ∞
0

e−ax dx

(β2 − x2)2
=

1

4β3

[
(aβ − 1)eaβEi(−aβ) + (1 + aβ)e−aβEi(aβ)

]
and

(4.14)

∫ ∞
0

xe−ax dx

(β2 − x2)2
=

1

4β2

[
−2 + aβ

(
e−aβEi(aβ)− eaβEi(−aβ)

])
.

These are entries 3.355.3 and 3.355.4, respectively.

Example 4.8. Differentiating (4.5) 2n-times with respect to a, gives∫ ∞
0

x2ne−ax dx

β2 + x2
= (−1)n−1β2n [ci(aβ) cos(aβ) + si(aβ) sin(aβ)] +(4.15)

+
1

β2n

n∑
k=1

(2n− 2k + 1)!(−a2β2)k−1.

This appears as Entry 3.356.2. The identity∫ ∞
0

x2ne−ax dx

β2 − x2
=

1

2
β2n−1

[
e−aβEi(aβ)− eaβEi(−aβ)

]
(4.16)

− 1

β2n−1

n∑
k=1

(2n− 2k)!(a2β2)k−1

is obtained by differentiating (4.1). This appears as Entry 3.356.4.

Example 4.9. The entries 3.356.1∫ ∞
0

x2n+1e−ax dx

β2 + x2
= (−1)n−1β2n [ci(aβ) cos aβ + si(aβ) sin aβ](4.17)

+
1

a2n

n∑
k=1

(2n− 2k + 1)!(−a2β2)k−1
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and entry 3.356.3∫ ∞
0

x2n+1e−ax dx

β2 − x2
=

1

2
β2n

[
eaβEi(−aβ) + e−aβEi(aβ)

]
(4.18)

− 1

a2n

n∑
k=1

(2n− 2k + 1)!(a2β2)k−1

are obtained by differentiating the entries in Example 4.8.

5. Some higher degree denominators

This section evaluates a series of entries in [2] where the integrand is an exponential
times a rational function with denominator of degree larger than 2.

Example 5.1. Entry 3.358.1 is

(5.1)

∫ ∞
0

e−ax dx

β4 − x4
=

1

4β3

{
e−aβEi(aβ)− eaβEi(−aβ) + 2 ci(aβ) sin(aβ)− 2 si(aβ) cos(aβ)

}
Start with the partial fraction decomposition

(5.2)
1

β4 − x4
=

1

2β2

(
1

β2 − x2
+

1

β2 + x2

)
which shows that the integral in question is a combination of (4.1) and (4.5). The
result follows from here.

Example 5.2. Entry 3.358.2

(5.3)

∫ ∞
0

xe−ax dx

β4 − x4
=

1

4β2

{
eaβEi(−aβ) + e−aβEi(aβ)− 2 ci(aβ) cos(aβ)− 2 si(aβ) sin(aβ)

}
.

This is obtained by differentiation of (5.1). The entries 3.358.3

(5.4)

∫ ∞
0

x2e−ax dx

β4 − x4
=

1

4β

{
e−aβEi(aβ)− eaβEi(−aβ)− 2 ci(aβ) sin(aβ) + 2 si(aβ) cos(aβ)

}
and 3.358.4

(5.5)

∫ ∞
0

x3e−ax dx

β4 − x4
=

1

4

{
eaβEi(−aβ) + e−aβEi(aβ) + 2 ci(aβ) cos(aβ) + 2 si(aβ) sin(aβ)

}
come from further differentiation.
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The entries in Section 3.357 can be established by algebraic manipulations of the
examples given above.

Example 5.3. Entry 3.357.1 states that∫ ∞
0

e−ax dx

β3 + β2x+ βx2 + x3
=

1

2β2
{ci(aβ)(sin aβ + cos(aβ))+(5.6)

si(aβ)(sin aβ − cos(aβ))− eaβEi(−aβ)
}

This formula is obtained from (5.1) and (5.3) and the algebraic identity

(5.7)
1

β3 + β2x+ βx2 + x3
=

β − x
β4 − x4

.

Example 5.4. Differentiation of (5.6) gives∫ ∞
0

xe−ax dx

β3 + β2x+ βx2 + x3
=

1

2β
{ci(aβ)(sin aβ − cos(aβ))(5.8)

−si(aβ)(sin aβ + cos(aβ))− eaβEi(−aβ)
}

This is entry 3.357.2 in [2].

Example 5.5. Differentiating (5.8) produces entry 3.357.3:∫ ∞
0

x2e−ax dx

β3 + β2x+ βx2 + x3
=

1

2
{−ci(aβ)(sin aβ + cos(aβ))(5.9)

−si(aβ)(sin aβ − cos(aβ))− eaβEi(−aβ)
}
.

The identity

(5.10)
1

β3 − β2x+ βx2 − x3
=

β + x

β4 − x4

and the method used to establish the last three entries produces proofs of the next
three.

Example 5.6. Entry 3.357.4 is∫ ∞
0

e−ax dx

β3 − β2x+ βx2 − x3
=

1

2β2
{ci(aβ)(sin aβ − cos(aβ))(5.11)

−si(aβ)(sin aβ + cos(aβ)) + e−aβEi(aβ)
}

and 3.357.5 is∫ ∞
0

xe−ax dx

β3 − β2x+ βx2 − x3
=

1

2β
{−ci(aβ)(sin aβ + cos(aβ))(5.12)

−si(aβ)(sin aβ − cos(aβ)) + e−aβEi(aβ)
}

and, finally, entry 3.357.6 is∫ ∞
0

x2e−ax dx

β3 − β2x+ βx2 − x3
=

1

2
{ci(aβ)(cos aβ − sin(aβ))(5.13)

+si(aβ)(cos aβ + sin(aβ)) + e−aβEi(aβ)
}
.
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6. Entries involving absolute values

This section presents the evaluation of some entries in [2] where the integrand
contains variations of the function ln |x|.

Example 6.1. Entry 4.337.3 states that

(6.1)

∫ ∞
0

e−µx ln |a− x| dx =
1

µ

[
ln a− e−aµEi(aµ)

]
.

To establish this entry observe that the singularity at x = a is integrable and that

(6.2)
d

dx
ln |a− x| = 1

a− x
.

Integration by parts produces∫ ∞
0

e−µx ln |a− x| dx = − 1

µ

∫ ∞
0

ln |x− a|de−µx

= − 1

µ

(
− log a− e−µa

∫ ∞
0

e−µx

x− a
dx

)
=

1

µ

(
ln a+ e−µt

∫ ∞
−µa

e−u

u
du

)
=

1

µ

(
ln a− e−µaEi(µa)

)
.

This is the result.

Example 6.2. Entry 4.337.4 states that

(6.3)

∫ ∞
0

e−µx ln

∣∣∣∣ β

β − x

∣∣∣∣ dx =
1

µ
e−βµEi(βµ).

This evaluation is obtained directly from (6.1) and the identity

(6.4)

∫ ∞
0

e−µx ln

∣∣∣∣ β

β − x

∣∣∣∣ dx = ln |β|
∫ ∞

0

e−µx dx−
∫ ∞

0

e−µx ln |β − x| dx.

7. Some integrals involving the logarithm function

The exponential integral function Ei allows the evaluation of a variety of entries
in [2] containing a logarithmic term. For instance 4.212.1:

(7.1)

∫ 1

0

dx

a+ lnx
= e−aEi(a)

follows from the change of variables t = a+ lnx. Similarly, 4.212.2:

(7.2)

∫ 1

0

dx

a− lnx
= −eaEi(−a)

is evaluated using t = a− lnx.
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We now consider the family

(7.3) fn(a) :=

∫ 1

0

dx

(a+ lnx)n
.

The change of variables t = a+ lnx gives

(7.4) fn(a) = e−a
∫ a

−∞
t−net dt.

Integrate by parts to produce

(7.5)

∫ a

−∞

et dt

tn
=
eaa1−n

1− n
− 1

1− n

∫ a

−∞

et dt

tn−1
.

This yields a recurrence for the integrals fn(a):

(7.6) fn(a) = − a
1−n

n− 1
+

1

n− 1
fn−1(a).

The initial value is given in 4.212.1. From here we deduce and prove by induction,
formula 4.212.8:

(7.7)

∫ 1

0

dx

(a+ lnx)n
=

e−a

(n− 1)!
Ei(a)− 1

(n− 1)!

n−1∑
k=1

(n− k − 1)!

an−k
.

Using (7.4) we obtain 3.351.4:

(7.8)

∫ ∞
a

e−px dx

xn+1
=

(−1)n+1pn

n!
Ei(−ap) +

e−ap

ann!

n−1∑
k=0

(−1)kpkak(n− k − 1)!

The integral 4.212.3:

(7.9)

∫ 1

0

dx

(a+ lnx)2
= −1

a
+ e−aEi(a)

is the special case n = 2 of (7.7). The integral 4.212.5:

(7.10)

∫ 1

0

lnx dx

(a+ lnx)2
= 1 + (1− a)e−aEi(a)

can be obtained from

(7.11)
lnx

(a+ lnx)2
=

1

a+ lnx
− a

(a+ lnx)2
.

Similar arguments produce 4.212.9:

(7.12)

∫ 1

0

dx

(a+ lnx)n
=

(−1)neaEi(−a)

(n− 1)!
+

(−1)n−1

(n− 1)!

n−1∑
k=1

(n− k − 1)!(−a)k−n.

The formula 4.212.4:

(7.13)

∫ 1

0

dx

(a− lnx)2
=

1

a
+ eaEi(−a)
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is the special case n = 2. Writing

(7.14) lnx = a− (a− lnx)

we obtain the evaluation of 4.212.6:

(7.15)

∫ 1

0

lnx dx

(a− lnx)2
= 1 + (1 + a)eaEi(−a).

8. The exponential scale

Several of the entries in [2] contain integrals that can be reduced to the definition
of the exponential integral. This section contains some of them.

Example 8.1. Entry 4.331.2 states that

(8.1)

∫ ∞
1

e−µx lnx dx = − 1

µ
Ei(−µ), for Reµ > 0.

To evaluate this entry, assume µ > 0 and integrate by parts to obtain

(8.2)

∫ ∞
1

e−µx lnx dx =
1

µ

∫ ∞
1

e−µx

x
dx.

The change of variables s = −µx now gives the result for µ ∈ R. The case µ ∈ C
follows by analytic continuation.

Example 8.2. Entry 4.337.1

(8.3)

∫ ∞
0

e−µx ln(β + x) dx =
1

µ

[
lnβ − eµβEi(−βµ)

]
, for |arg β| < π, Reµ > 0

can be transformed to 4.331.2 by simple changes of variables. Start with β > 0 and
make the change of variables x = βt to obtain

(8.4)

∫ ∞
0

e−µx ln(β + x) dx =
lnβ

µ
+ β

∫ ∞
0

e−µβt ln(1 + t) dt.

The change of variables s = t+ 1 and Entry 4.331.2 gives the result.

Example 8.3. Entry 4.337.2 is

(8.5)

∫ ∞
0

e−µx ln(1 + βx) dx = − 1

µ
eµ/βEi(−µ/β).

The change of variables t = βx reduces this integral to 4.337.1 with µ 7→ µ/β and
β 7→ 1.

The change of variables t = −aenu produces

(8.6) Ei(x) = −n
∫ ∞
c

exp (−aenu) du,

where c = 1
n ln(−x/a). The choice x = −a produces

(8.7) Ei(−a) = −n
∫ ∞

0

exp (−aenu) .

This appears as 3.327 in [2].
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Some further examples of entries in [2], containing the exponential integral func-
tion, will be described in a future publication.
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