SCIENTIA

Series A: Mathematical Sciences, Vol. 16 (2008), 9-24
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2007

The integrals in Gradshteyn and Ryzhik. Part 6: The beta function

Victor H. Moll

Abstract. We present a systematic derivation of some definite integrals in the classical table of Gradshteyn and Ryzhik that can be reduced to the beta function.

1. Introduction

The table of integrals [2] contains some evaluations that can be derived by elementary means from the beta function, defined by

$$
\begin{equation*}
B(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x \tag{1.1}
\end{equation*}
$$

The convergence of the integral in (1.1) requires $a, b>0$. This definition appears as 3.191.3 in [2].

Our goal is to present in a systematic manner, the evaluations appearing in the classical table of Gradshteyn and Ryzhik [2], that involve this function. In this part, we restrict to algebraic integrands leaving the trigonometric forms for a future publication. This paper complements [3] that dealt with the gamma function defined by

$$
\begin{equation*}
\Gamma(a):=\int_{0}^{\infty} x^{a-1} e^{-x} d x . \tag{1.2}
\end{equation*}
$$

These functions are related by the functional equation

$$
\begin{equation*}
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \tag{1.3}
\end{equation*}
$$

A proof of this identity can be found in [1].
The special values $\Gamma(n)=(n-1)$! and

$$
\begin{equation*}
\Gamma\left(n+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{2 n}} \frac{(2 n)!}{n!} \tag{1.4}
\end{equation*}
$$

2000 Mathematics Subject Classification. Primary 33.
Key words and phrases. Integrals, beta function.
The author wishes to thank Luis Medina for a careful reading of an earlier version of the paper. The partial support of NSF-DMS 0409968 is also acknowledged.
for $n \in \mathbb{N}$, will be used to simplify the values of the integrals presented here. Proofs of these formulas can be found in [3] as well as in Proposition 2.1 below.

The other property that will be employed frequently is

$$
\begin{equation*}
\Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin \pi a} \tag{1.5}
\end{equation*}
$$

The reader will find in [1] a proof based on the product representation of these functions. A challenging problem is to produce a proof that only employs changes of variables.

The table [2] contains some direct values:

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{p} d x}{(1-x)^{p}}=\frac{p \pi}{\sin p \pi} \tag{1.6}
\end{equation*}
$$

is $\mathbf{3 . 1 9 2 . 1}$ and is evaluated by identifying it as $B(p+1,1-p)$. Formula $\mathbf{3 . 1 9 2 . 2}$ is

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{p} d x}{(1-x)^{p+1}}=-\frac{\pi}{\sin p \pi} \tag{1.7}
\end{equation*}
$$

has the value $B(p+1,-p)=\Gamma(p+1) \Gamma(-p)$. Next, 3.192.3 is

$$
\begin{equation*}
\int_{0}^{1} \frac{(1-x)^{p}}{x^{p+1}} d x=-\frac{\pi}{\sin p \pi} \tag{1.8}
\end{equation*}
$$

and the change of variables $t=1 / x$ in $\mathbf{3 . 1 9 2} .4$ produces

$$
\begin{equation*}
\int_{1}^{\infty}(x-1)^{p-1 / 2} \frac{d x}{x}=\int_{0}^{1} t^{-p-1 / 2}(1-t)^{p-1 / 2} d t \tag{1.9}
\end{equation*}
$$

and this is

$$
\begin{equation*}
B\left(\frac{1}{2}-p, \frac{1}{2}+p\right)=\Gamma\left(\frac{1}{2}-p\right) \Gamma\left(\frac{1}{2}+p\right)=\frac{\pi}{\cos p \pi} \tag{1.10}
\end{equation*}
$$

as stated in [2].
Let $b=\frac{1}{2}$ in (1.1) to obtain

$$
\begin{equation*}
\int_{0}^{1} \frac{x^{a-1} d x}{\sqrt{1-x}}=B\left(a, \frac{1}{2}\right)=\frac{\Gamma(a) \sqrt{\pi}}{\Gamma\left(a+\frac{1}{2}\right)} . \tag{1.11}
\end{equation*}
$$

The special values $a=n+1$ and $a=n+\frac{1}{2}$ appear as 3.226.1 and 3.226.2, respectively.

2. Elementary properties

Many of the properties of the beta function can be established by simple changes of variables. For example, letting $y=1-x$ in (1.1) yields the symmetry

$$
\begin{equation*}
B(a, b)=B(b, a) . \tag{2.1}
\end{equation*}
$$

It should not be surprising that a clever change of variables might lead to a beautiful result. This is illustrated following Serret [4]. Start with

$$
\begin{aligned}
B(a, a) & =\int_{0}^{1}\left(x-x^{2}\right)^{a-1} d x \\
& =2 \int_{0}^{1 / 2}\left[\frac{1}{4}-\left(\frac{1}{2}-x\right)^{2}\right]^{a-1} d x
\end{aligned}
$$

The natural change of variables $v=\frac{1}{2}-x$ yields

$$
\begin{equation*}
B(a, a)=2 \int_{0}^{1 / 2}\left(\frac{1}{4}-v^{2}\right)^{a-1} d v \tag{2.2}
\end{equation*}
$$

The next step is now clear: let $s=4 v^{2}$ to produce

$$
\begin{equation*}
B(a, a)=2^{1-2 a} B\left(a, \frac{1}{2}\right) . \tag{2.3}
\end{equation*}
$$

The functional equation (1.3) converts this identity into Legendre's original form:
Proposition 2.1. The gamma function satisfies

$$
\begin{equation*}
\Gamma\left(a+\frac{1}{2}\right)=\frac{\Gamma(2 a) \Gamma\left(\frac{1}{2}\right)}{\Gamma(a) 2^{2 a-1}} . \tag{2.4}
\end{equation*}
$$

In particular, for $a=n \in \mathbb{N}$, this yields (1.4).

3. Elementary changes of variables

The integral (1.1) defining the beta function can be transformed by changes of variables. For example, the new variable $x=t / u$, reduces (1.1) to

$$
\begin{equation*}
\int_{0}^{u} t^{a-1}(u-t)^{b-1} d t=u^{a+b-1} B(a, b) \tag{3.1}
\end{equation*}
$$

that appears as $\mathbf{3} . \mathbf{1 9 1 . 1}$ in [2]. The effect of this change of variables is to express the beta function as an integral over a finite interval. Observe that the integrand vanishes at both end points. Similarly, the change $t=(v-u) x+u$ maps the interval $[0,1]$ to $[u, v]$. It yields

$$
\begin{equation*}
\int_{u}^{v}(t-u)^{a-1}(v-t)^{b-1} d t=(v-u)^{a+b-1} B(a, b) \tag{3.2}
\end{equation*}
$$

This is 3.196.3 in [2]. The special case $u=0, v=n$ and $a=\nu, b=n+1$ appears as 3.193 in [2] as

$$
\begin{equation*}
\int_{0}^{n} x^{\nu-1}(n-x)^{n} d x=\frac{n^{\nu+n} n!}{\nu(\nu+1)(\nu+2) \cdots(\nu+n)} \tag{3.3}
\end{equation*}
$$

Several integrals in [2] can be obtained by a small variation of the definition. For example, the integral

$$
\begin{equation*}
\int_{0}^{1}\left(1-x^{a}\right)^{b-1} d x=\frac{1}{a} B(1 / a, b) \tag{3.4}
\end{equation*}
$$

can be obtained by the change of variables $t=x^{a}$. This appears as $\mathbf{3 . 2 4 9 . 7}$ in [2] and illustrates the fact that it not necessary for the integrand to vanish at both end points. The special case $a=2$ appears as $\mathbf{3 . 2 4 9 . 5}$:

$$
\begin{equation*}
\int_{0}^{1}\left(1-x^{2}\right)^{b-1} d x=\frac{1}{2} B\left(\frac{1}{2}, b\right)=2^{2 b-2} B(b, b), \tag{3.5}
\end{equation*}
$$

where the second identity follows from Legendre's duplication formula (2.4).

The change of variables $t=c x$ produces a scaled version:

$$
\begin{equation*}
\int_{0}^{c}\left(c^{a}-t^{a}\right)^{b-1} d t=\frac{1}{a} c^{a(b-1)+1} B(1 / a, b) . \tag{3.6}
\end{equation*}
$$

The special case $a=2$ yields

$$
\begin{equation*}
\int_{0}^{c}\left(c^{2}-t^{2}\right)^{b-1} d t=\frac{c^{2 b-1}}{2} B(1 / 2, b) . \tag{3.7}
\end{equation*}
$$

The choice $b=n+\frac{1}{2}$ appears as 3.249.2 in [2]:

$$
\begin{equation*}
\int_{0}^{c}\left(c^{2}-t^{2}\right)^{n-1 / 2} d t=\frac{\pi c^{2 n}}{2^{2 n+1}}\binom{2 n}{n} \tag{3.8}
\end{equation*}
$$

Similarly $\mathbf{3 . 2 5 1 . 1}$ in $[\mathbf{2}]$ is

$$
\begin{equation*}
\int_{0}^{1} x^{c-1}\left(1-x^{a}\right)^{b-1} d x=\frac{1}{a} B\left(\frac{c}{a}, b\right) . \tag{3.9}
\end{equation*}
$$

The change of variables $t=1 / x$ converts (1.1) into

$$
\begin{equation*}
\int_{1}^{\infty} t^{-a-b}(t-1)^{b-1} d t=B(a, b) . \tag{3.10}
\end{equation*}
$$

Letting $t=x^{p}$ yields

$$
\begin{equation*}
\int_{1}^{\infty} x^{p(1-a-b)-1}\left(x^{p}-1\right)^{b-1} d x=\frac{1}{p} B(a, b) . \tag{3.11}
\end{equation*}
$$

The special case $\nu=b$ and $\mu=p(1-a-b)$ is 3.251.3:

$$
\begin{equation*}
\int_{1}^{\infty} x^{\mu-1}\left(x^{p}-1\right)^{\nu-1} d x=\frac{1}{p} B(1-\nu-\mu / p, \nu) . \tag{3.12}
\end{equation*}
$$

4. Integrals over a half-line

The beta function can also be expressed as an integral over a half-line. The change of variables $t=x /(1-x)$ maps $[0,1]$ onto $[0, \infty)$ and it produces from (1.1)

$$
\begin{equation*}
B(a, b)=\int_{0}^{\infty} \frac{t^{a-1} d t}{(1+t)^{a+b}} \tag{4.1}
\end{equation*}
$$

In particular, if $a+b=1$, using (1.3) and (1.5), we obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{a-1} d t}{1+t}=\frac{\pi}{\sin \pi a} \tag{4.2}
\end{equation*}
$$

This can be scaled to produce, for $a>0$ and $c>0$,

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} d x}{x+c}=\frac{\pi}{\sin \pi a} c^{a-1} \quad \text { for } c>0 \tag{4.3}
\end{equation*}
$$

that appears as $\mathbf{3 . 2 2 2 . 2}$ in [2]. In the case $c<0$ we have a singular integral. Define $b=-c>0$ and $s=x / b$, so now we have to evaluate

$$
\begin{equation*}
I=-b^{a-1} \int_{0}^{\infty} \frac{s^{a-1} d s}{1-s} \tag{4.4}
\end{equation*}
$$

The integral is considered as a Cauchy principal value

$$
\begin{equation*}
I=\lim _{\epsilon \rightarrow 0} \int_{0}^{1} \frac{s^{a-1} d s}{(1-s)^{1-\epsilon}}+\int_{1}^{\infty} \frac{s^{a-1} d s}{(1-s)^{1-\epsilon}} \tag{4.5}
\end{equation*}
$$

Let $y=1 / s$ in the second integral and evaluate them in terms of the beta function to produce

$$
\begin{equation*}
I=\lim _{\epsilon \rightarrow 0} \epsilon \Gamma(\epsilon) \times \frac{1}{\epsilon}\left(\frac{\Gamma(a)}{\Gamma(a+\epsilon)}-\frac{\Gamma(1-a-\epsilon)}{\Gamma(1-a)}\right) \tag{4.6}
\end{equation*}
$$

Use L'Hopital's rule to evaluate and obtain

$$
\begin{equation*}
I=-\frac{\Gamma^{\prime}(a)}{\Gamma(a)}+\frac{\Gamma^{\prime}(1-a)}{\Gamma(a)} \tag{4.7}
\end{equation*}
$$

Using the relation $\Gamma(a) \Gamma(1-a)=\pi \operatorname{cosec} \pi a$, this reduces to $\pi \cot \pi a$. Therefore we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} d x}{x+c}=-\frac{\pi}{\tan \pi a}(-c)^{a-1} \quad \text { for } c<0 \tag{4.8}
\end{equation*}
$$

The change of variables $x=e^{-t}$ produces, for $c<0$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-\mu t} d t}{e^{-t}+c}=-\pi \cot (\mu \pi)(-c)^{\mu-1} \tag{4.9}
\end{equation*}
$$

The special case $c=-1$ appears as 3.313.1:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-\mu t} d t}{1-e^{-t}}=\pi \cot (\mu \pi) \tag{4.10}
\end{equation*}
$$

We now consider several examples in [2] that are direct consequences of (4.3) and (4.8). In the first example, we combine (4.3) with the partial fraction decomposition

$$
\begin{equation*}
\frac{1}{(x+a)(x+b)}=\frac{1}{b-a}\left(\frac{1}{x+a}-\frac{1}{x+b}\right) \tag{4.11}
\end{equation*}
$$

leads to 3.223.1:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\mu-1} d x}{(x+b)(x+a)}=\frac{\pi}{b-a}\left(a^{\mu-1}-b^{\mu-1}\right) \operatorname{cosec}(\pi \mu) \tag{4.12}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{1}{x+b}-\frac{1}{x-a}=\frac{a+b}{(a-x)(b+x)} \tag{4.13}
\end{equation*}
$$

leads to 3.223.2:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\mu-1} d x}{(b+x)(a-x)}=\frac{\pi}{a+b}\left(b^{\mu-1} \operatorname{cosec}(\mu \pi)+a^{\mu-1} \cot (\mu \pi)\right), \tag{4.14}
\end{equation*}
$$

using (4.3) and (4.8). The result 3.223.3:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\mu-1} d x}{(a-x)(b-x)}=\pi \cot (\mu \pi) \frac{a^{\mu-1}-b^{\mu-1}}{b-a} \tag{4.15}
\end{equation*}
$$

follows from

$$
\begin{equation*}
\frac{1}{(a-x)(b-x)}=\frac{1}{a-b}\left(\frac{1}{b-x}-\frac{1}{a-x}\right) . \tag{4.16}
\end{equation*}
$$

Finally, 3.224:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{(x+b) x^{\mu-1} d x}{(x+a)(x+c)}=\frac{\pi}{\sin (\mu \pi)}\left(\frac{a-b}{a-c} a^{\mu-1}+\frac{c-b}{c-a} c^{\mu-1}\right), \tag{4.17}
\end{equation*}
$$

follows from

$$
\begin{equation*}
\frac{x+b}{(x+a)(x+c)}=\frac{b-a}{c-a} \frac{1}{x+a}-\frac{b-c}{c-a} \frac{1}{x+c} . \tag{4.18}
\end{equation*}
$$

We can now transform (4.1) to the interval $[0,1]$ by splitting $[0, \infty)$ as $[0,1]$ followed by $[1, \infty)$. In the second integral, we let $t=1 / s$. The final result is

$$
\begin{equation*}
B(a, b)=\int_{0}^{1} \frac{t^{a-1}+t^{b-1}}{(1+t)^{a+b}} d t \tag{4.19}
\end{equation*}
$$

This formula, that appears as $\mathbf{3 . 2 1 6}$.1, makes it apparent that the beta function is symmetric: $B(a, b)=B(b, a)$. The change of variables $s=1 / t$ converts (4.19) into 3.216.2:

$$
\begin{equation*}
B(a, b)=\int_{1}^{\infty} \frac{s^{a-1}+s^{b-1}}{(1+s)^{a+b}} d s \tag{4.20}
\end{equation*}
$$

It is easy to introduce a parameter: let $c>0$ and consider the change of variables $t=c x$ in (4.1) to obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} d x}{(1+c x)^{a+b}}=c^{-a} B(a, b) \tag{4.21}
\end{equation*}
$$

that appears as 3.194.3. We can now shift the lower limit of integration via $t=x+u$ to produce

$$
\begin{equation*}
\int_{u}^{\infty}(t-u)^{a-1}(t+v)^{-a-b} d t=(u+v)^{-b} B(a, b) \tag{4.22}
\end{equation*}
$$

where $v=1 / c-u$. This is $\mathbf{3 . 1 9 6 . 2}$, where v is denoted by β. Now let $b=c-a$ in the special case $v=0$ to obtain

$$
\begin{equation*}
\int_{u}^{\infty}(t-u)^{a-1} t^{-c} d t=u^{a-c} B(a, c-a) . \tag{4.23}
\end{equation*}
$$

This appears as 3.191.2.

We now write (4.1) using the change of variables $t=x^{c}$. It produces

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a c-1} d x}{\left(1+x^{c}\right)^{a+b}}=\frac{1}{c} B(a, b) . \tag{4.24}
\end{equation*}
$$

The special case $c=2$ and $a=1+\mu / 2, b=1-\mu / 2$ produces 3.251.6 in the form

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\mu+1} d x}{\left(1+x^{2}\right)^{2}}=\frac{\mu \pi}{4 \sin \mu \pi / 2} \tag{4.25}
\end{equation*}
$$

Now let $b=1-a$ and choose $a=p / c$ to obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{p-1} d x}{1+x^{c}}=\frac{1}{c} B\left(\frac{p}{c}, \frac{c-p}{c}\right)=\frac{\pi}{c} \operatorname{cosec}(\pi p / c) \tag{4.26}
\end{equation*}
$$

This appears as $\mathbf{3 . 2 4 1 . 2}$ in [2].
Similar arguments establish 3.196.4:

$$
\begin{equation*}
\int_{1}^{\infty} \frac{d x}{(a-b x)(x-1)^{\nu}}=-\frac{\pi}{b} \operatorname{cosec}(\nu \pi)\left(\frac{b}{b-a}\right)^{\nu} \tag{4.27}
\end{equation*}
$$

Indeed, the change of variables $t=x-1$ yields

$$
\begin{equation*}
\int_{1}^{\infty} \frac{d x}{(a-b x)(x-1)^{\nu}}=\int_{0}^{\infty} \frac{d t}{[(a-b)-b t] t^{\nu}} \tag{4.28}
\end{equation*}
$$

and scaling via the new variable $z=b t /(b-a)$ gives

$$
\begin{equation*}
\int_{1}^{\infty} \frac{d x}{(a-b x)(x-1)^{\nu}}=-\frac{1}{b}\left(\frac{b}{b-a}\right)^{\nu} \int_{0}^{\infty} \frac{d z}{(1+z) z^{\nu}} \tag{4.29}
\end{equation*}
$$

The result follows from (4.1) and the value

$$
\begin{equation*}
B(\nu, 1-\nu)=\Gamma(\nu) \Gamma(1-\nu)=\frac{\pi}{\sin \pi \nu} \tag{4.30}
\end{equation*}
$$

The same argument gives 3.196.5:

$$
\begin{equation*}
\int_{-\infty}^{1} \frac{d x}{(a-b x)(1-x)^{\nu}}=\frac{\pi}{b} \operatorname{cosec}(\nu \pi)\left(\frac{b}{a-b}\right)^{\nu} \tag{4.31}
\end{equation*}
$$

5. Some direct evaluations

There are many more integrals in [2] that can be evaluated in terms of the beta function. For example, $\mathbf{3 . 2 2 1}$. 1 states that

$$
\begin{equation*}
\int_{a}^{\infty} \frac{(x-a)^{p-1} d x}{x-b}=\pi(a-b)^{p-1} \operatorname{cosec} \pi p \tag{5.1}
\end{equation*}
$$

To establish these identities, we assume that $a>b$ to avoid the singularities. The change of variables $t=(x-a) /(a-b)$ yields

$$
\begin{equation*}
\int_{a}^{\infty} \frac{(x-a)^{p-1} d x}{x-b}=(a-b)^{p-1} \int_{0}^{\infty} \frac{t^{p-1} d t}{1+t} \tag{5.2}
\end{equation*}
$$

and this integral appears in (4.2).

Similarly, $\mathbf{3 . 2 2 1}$.2 states that

$$
\begin{equation*}
\int_{-\infty}^{a} \frac{(a-x)^{p-1} d x}{x-b}=-\pi(b-a)^{p-1} \operatorname{cosec} \pi p \tag{5.3}
\end{equation*}
$$

This is evaluated by the change of variables $y=(a-x) /(b-a)$.
The table contains several evaluations that are elementary corollaries of (4.1). Starting with

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a} d x}{(1+x)^{b}}=B(a+1, b-a-1)=\frac{\Gamma(a+1) \Gamma(b-a-1)}{\Gamma(b)} \tag{5.4}
\end{equation*}
$$

we find the case $a=p$ and $b=3$ in 3.225.3:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{p} d x}{(1+x)^{3}}=\frac{\Gamma(p+1) \Gamma(2-p)}{\Gamma(3)}=\frac{p(1-p)}{2} \frac{\pi}{\sin (p \pi)} \tag{5.5}
\end{equation*}
$$

using elementary properties of the gamma function.
The change of variables $t=1+x$ converts (5.4) into

$$
\begin{equation*}
\int_{1}^{\infty} \frac{(t-1)^{a} d t}{t^{b}}=B(a+1, b-a-1)=\frac{\Gamma(a+1) \Gamma(b-a-1)}{\Gamma(b)} . \tag{5.6}
\end{equation*}
$$

The special case $a=p-1$ and $b=2$ gives

$$
\begin{equation*}
\int_{1}^{\infty} \frac{(t-1)^{p-1} d t}{t^{2}}=\Gamma(p) \Gamma(2-p)=(1-p) \Gamma(p) \Gamma(1-p)=\frac{\pi(1-p)}{\sin (p \pi)} \tag{5.7}
\end{equation*}
$$

This appears as 3.225.1. Similarly, the case $a=1-p$ and $b=3$ produces 3.225.2:

$$
\begin{equation*}
\int_{1}^{\infty} \frac{(t-1)^{1-p} d t}{t^{3}}=\frac{\Gamma(2-p) \Gamma(1+p)}{\Gamma(3)}=\frac{1}{2} p(1-p) \Gamma(p) \Gamma(1-p)=\frac{\pi p(1-p)}{2 \sin (p \pi)} \tag{5.8}
\end{equation*}
$$

6. Introducing parameters

It is often convenient to introduce free parameters in a definite integral. Starting with (4.1), the change of variables $t=\frac{u}{v} x^{c}$ yields

$$
\begin{equation*}
B(a, b)=c u^{a} v^{b} \int_{0}^{\infty} \frac{t^{a c-1} d t}{\left(v+u t^{c}\right)^{a+b}} \tag{6.1}
\end{equation*}
$$

This formula appears as $\mathbf{3 . 2 4 1} .4$ in [2] with the parameters

$$
\begin{equation*}
a=\frac{\mu}{\nu}, b=n+1-\frac{\mu}{\nu}, c=\nu, u=q, \text { and } v=p \tag{6.2}
\end{equation*}
$$

in the form

$$
\int_{0}^{\infty} \frac{x^{\mu-1} d x}{\left(p+q x^{\nu}\right)^{n+1}}=\frac{1}{\nu p^{n+1}}\left(\frac{p}{q}\right)^{\mu / \nu} \frac{\Gamma(\mu / \nu) \Gamma(n+1-\mu / \nu)}{\Gamma(n+1)}
$$

This is a messy notation and it leaves the wrong impression that n should be an integer.

- The special case $v=c=1$ and $b=p+1-a$ produces

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{a-1} d t}{(1+u t)^{p+1}}=\frac{1}{u^{a}} B(a, p+1-a) \tag{6.3}
\end{equation*}
$$

This appears as $\mathbf{3 . 1 9 4 . 4}$ in [2], except that it is written in terms of binomial coefficients as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{a-1} d t}{(1+u t)^{p+1}}=(-1)^{p} \frac{\pi}{u^{a}}\binom{a-1}{p} \operatorname{cosec}(\pi a) \tag{6.4}
\end{equation*}
$$

We prefer the notation in (6.3).

- The special case $v=c=1$ and $b=2-a$ produces

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{a-1} d t}{(1+u t)^{2}}=\frac{1}{u^{a}} B(a, 2-a) \tag{6.5}
\end{equation*}
$$

Using (1.3) and (1.5) yields the form

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{a-1} d t}{(1+u t)^{2}}=\frac{(1-a) \pi}{u^{a} \sin \pi a} \tag{6.6}
\end{equation*}
$$

This appears as $\mathbf{3 . 1 9 4 . 6}$ in [2].

- The special case $u=v=1$ and $c=q$, and choosing $a=p / q$ and $b=2-p / q$ yields
3.241.5 in the form

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{p-1} d x}{\left(1+x^{q}\right)^{2}}=\frac{q-p}{q^{2}} \frac{\pi}{\sin (\pi p / q)} \tag{6.7}
\end{equation*}
$$

- The special case $c=1$ and $a=m+1, b=n-m-\frac{1}{2}$ produces

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{m} d t}{(v+u t)^{n+\frac{1}{2}}}=\frac{1}{u^{m+1} v^{n-m-\frac{1}{2}}} B\left(m+1, n-m-\frac{1}{2}\right) \tag{6.8}
\end{equation*}
$$

Using (1.3) and (1.4) this reduces to

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{m} d t}{(v+u t)^{n+\frac{1}{2}}}=\frac{m!n!(2 n-2 m-2)!}{(n-m-1)!(2 n)!} 2^{2 m+2} \frac{v^{m-n+1 / 2}}{u^{m+1}} \tag{6.9}
\end{equation*}
$$

for $m, n \in \mathbb{N}$, with $n>m$. This appears as 3.194.7 in [2].

- The special case $u=v=1$ and $b=\frac{1}{2}-a$ yields

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{a c-1} d t}{\sqrt{1+t^{c}}}=\frac{1}{c} B\left(a, \frac{1}{2}-a\right) \tag{6.10}
\end{equation*}
$$

Writing $a=p / c$ we recover 3.248.1:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{p-1} d t}{\sqrt{1+t^{c}}}=\frac{1}{c} B\left(\frac{p}{c}, \frac{1}{2}-\frac{p}{c}\right) \tag{6.11}
\end{equation*}
$$

- Now replace v by v^{2} in (6.1). Then, with $u=1, a=\frac{1}{2}, c=2$, so that $a c=1$ and $b=n-\frac{1}{2}$ we obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{\left(v^{2}+t^{2}\right)^{n}}=\frac{1}{2 v^{2 n-1}} B\left(\frac{1}{2}, n-\frac{1}{2}\right) . \tag{6.12}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{\left(v^{2}+t^{2}\right)^{n}}=\frac{\sqrt{\pi} \Gamma(n-1 / 2)}{2 \Gamma(n) v^{2 n-1}} \tag{6.13}
\end{equation*}
$$

that appears as $\mathbf{3 . 2 4 9 . 1}$ in [2].

- The special case $v=1, c=2$ and $b=\frac{n}{2}-a$ in (6.1) yields

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{2 a-1} d t}{\left(1+u t^{2}\right)^{n / 2}}=\frac{1}{2 u^{a}} B\left(a, \frac{n}{2}-a\right) \tag{6.14}
\end{equation*}
$$

Now $a=1 / 2$ gives

$$
\begin{equation*}
\int_{0}^{\infty}\left(1+u t^{2}\right)^{-n / 2} d t=\frac{1}{2 \sqrt{u}} B\left(\frac{1}{2}, \frac{n-1}{2}\right)=\frac{\sqrt{\pi}}{2 \sqrt{u}} \frac{\Gamma\left(\frac{n-1}{2}\right)}{\Gamma(n / 2)} \tag{6.15}
\end{equation*}
$$

It is curious that the table [2] contains $\mathbf{3 . 2 4 9 . 8}$ as the special case $u=1 /(n-1)$ of this evaluation.

- We now put $u=v=1$ and $c=2$ in (6.1). Then, with $b=1-\nu-a$ and $a=\mu / 2$, we obtain 3.251.2:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{\mu-1} d t}{\left(1+t^{2}\right)^{1-\nu}}=\frac{1}{2} B\left(\frac{\mu}{2}, 1-\nu-\frac{\mu}{2}\right) . \tag{6.16}
\end{equation*}
$$

- We now consider the case $c=2$ in (6.1):

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{2 a-1} d t}{\left(v+u t^{2}\right)^{a+b}}=\frac{1}{2 u^{a} v^{b}} B(a, b) \tag{6.17}
\end{equation*}
$$

The special case $a=m+\frac{1}{2}$ and $b=n-m+\frac{1}{2}$ yields

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{2 m} d t}{\left(v+u t^{2}\right)^{n+1}}=\frac{\Gamma(m+1 / 2) \Gamma(n-m+1 / 2)}{2 u^{m+1 / 2} v^{n-m+1 / 2} \Gamma(n+1)} \tag{6.18}
\end{equation*}
$$

and using (1.4) we obtain 3.251.4:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{2 m} d t}{\left(v+u t^{2}\right)^{n+1}}=\frac{\pi(2 m)!(2 n-2 m)!}{2^{2 n+1} m!(n-m)!n!u^{m+1 / 2} v^{n-m+1 / 2}} \tag{6.19}
\end{equation*}
$$

for $n, m \in \mathbb{N}$ with $n>m$.
On the other hand, if we choose $a=m+1$ and $b=n-m$ we obtain 3.251.5:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{2 m+1} d t}{\left(v+u t^{2}\right)^{n+1}}=\frac{\Gamma(m+1) \Gamma(n-m)}{2 u^{m+1} v^{n-m} \Gamma(n+1)}=\frac{m!(n-m-1)!}{2 n!u^{m+1} v^{n-m}} \tag{6.20}
\end{equation*}
$$

Several evaluation in [2] come from the form

$$
\begin{equation*}
\int_{0}^{1} t^{a q-1}\left(1-t^{q}\right)^{b-1} d t=\frac{1}{q} B(a, b) \tag{6.21}
\end{equation*}
$$

obtained from (1.1) by the change of variables $x=t^{q}$.

- The choice $a=1+p / q$ and $b=1-p / q$ produces

$$
\begin{equation*}
\int_{0}^{1} t^{p+q-1}\left(1-t^{q}\right)^{-p / q} d t=\frac{1}{q} B\left(1+\frac{p}{q}, 1-\frac{p}{q}\right)=\frac{p \pi}{q^{2}} \operatorname{cosec}\left(\frac{p \pi}{q}\right) . \tag{6.22}
\end{equation*}
$$

This appears as 3.251.8.

- The choice $a=1 / p$ and $b=1-1 / p$ gives

$$
\begin{equation*}
\int_{0}^{1} x^{q / p-1}\left(1-x^{q}\right)^{-1 / p} d x=\frac{1}{q} B\left(\frac{1}{p}, 1-\frac{1}{p}\right)=\frac{\pi}{q} \operatorname{cosec}\left(\frac{\pi}{p}\right) . \tag{6.23}
\end{equation*}
$$

This appears as 3.251.9.

- The reader can now check that the choice $a=p / q$ and $b=1-p / q$ yields the evaluation

$$
\begin{equation*}
\int_{0}^{1} x^{p-1}\left(1-x^{q}\right)^{-p / q} d x=\frac{1}{q} B\left(\frac{p}{q}, 1-\frac{p}{q}\right)=\frac{\pi}{q} \operatorname{cosec}\left(\frac{p \pi}{q}\right) . \tag{6.24}
\end{equation*}
$$

This appears as 3.251.10.

- Putting $v=1$ and $b=\nu-a$ in (6.1) we get

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{a c-1} d t}{\left(1+u t^{c}\right)^{\nu}}=\frac{1}{c u^{a}} B(a, \nu-a) \tag{6.25}
\end{equation*}
$$

Now let $a=r / c$ to obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{r-1} d t}{\left(1+u t^{c}\right)^{\nu}}=\frac{1}{c u^{r / c}} B\left(\frac{r}{c}, \nu-\frac{r}{c}\right) . \tag{6.26}
\end{equation*}
$$

This appears as 3.251.11.

- We now choose $b=1-1 / q$ in (6.21) to obtain

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{a q-1} d t}{\sqrt[q]{1-t^{q}}}=\frac{1}{q} B\left(a, 1-\frac{1}{q}\right) \tag{6.27}
\end{equation*}
$$

Finally, writing $a=c-(m-1) / q$ gives the form

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{c q-m} d t}{\sqrt[q]{1-t^{q}}}=\frac{1}{q} B\left(c+\frac{1}{q}-\frac{m}{q}, 1-\frac{1}{q}\right) \tag{6.28}
\end{equation*}
$$

The special case $q=2$ produces

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{2 c-m} d t}{\sqrt{1-t^{2}}}=\frac{1}{2} B\left(c+\frac{1}{2}-\frac{m}{2}, \frac{1}{2}\right)=\frac{\Gamma\left(c+\frac{1}{2}-\frac{m}{2}\right) \sqrt{\pi}}{2 \Gamma\left(c+1-\frac{m}{2}\right)} \tag{6.29}
\end{equation*}
$$

In particular, if $c=n+1$ and $m=1$ we obtain 3.248.2:

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{2 n+1} d t}{\sqrt{1-t^{2}}}=\frac{\sqrt{\pi} n!}{2 \Gamma(n+3 / 2)}=\frac{2^{2 n} n!^{2}}{(2 n+1)!} \tag{6.30}
\end{equation*}
$$

Similarly, $c=n$ and $m=0$ yield 3.248.3:

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{2 n} d t}{\sqrt{1-t^{2}}}=\frac{\pi}{2^{2 n+1}} \frac{(2 n)!}{n!^{2}}=\frac{\pi}{2^{2 n+1}}\binom{2 n}{n} \tag{6.31}
\end{equation*}
$$

In the case $q=3$ we get

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{3 c-m} d t}{\sqrt[3]{1-t^{3}}}=\frac{1}{3} B\left(c+\frac{1}{3}-\frac{m}{3}, 1-\frac{1}{3}\right) \tag{6.32}
\end{equation*}
$$

This includes $\mathbf{3}$.267.1 and $\mathbf{3 . 2 6 7 . 2}$ in [2]:

$$
\begin{aligned}
\int_{0}^{1} \frac{t^{3 n} d t}{\sqrt[3]{1-t^{3}}} & =\frac{2 \pi}{3 \sqrt{3}} \frac{\Gamma\left(n+\frac{1}{3}\right)}{\Gamma\left(\frac{1}{3}\right) \Gamma(n+1)} \\
\int_{0}^{1} \frac{t^{3 n-1} d t}{\sqrt[3]{1-t^{3}}} & =\frac{(n-1)!\Gamma\left(\frac{2}{3}\right)}{3 \Gamma\left(n+\frac{2}{3}\right)}
\end{aligned}
$$

The latest edition of [2] has added our suggestion

$$
\begin{equation*}
\int_{0}^{1} \frac{t^{3 n-2} d t}{\sqrt[3]{1-t^{3}}}=\frac{\Gamma\left(n-\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)}{3 \Gamma\left(n+\frac{1}{3}\right)} \tag{6.33}
\end{equation*}
$$

as 3.267.3.

7. The exponential scale

We now present examples of (1.1) written in terms of the exponential function. The change of variables $x=e^{-c t}$ in (1.1) yields

$$
\begin{equation*}
\int_{0}^{\infty} e^{-a t}\left(1-e^{-c t}\right)^{b-1} d t=\frac{1}{c} B\left(\frac{a}{c}, b\right) . \tag{7.1}
\end{equation*}
$$

This appears as $\mathbf{3 . 3 1 2 . 1}$ in [2]. On the other hand, if we let $x=e^{-c t}$ in (4.1) we get

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-a c t} d t}{\left(1+e^{-c t}\right)^{a+b}}=\frac{1}{c} B(a, b) \tag{7.2}
\end{equation*}
$$

This appears as $\mathbf{3 . 3 1 3 . 2}$ in [2]. The reader can now use the techniques described above to verify

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-\mu x} d x}{\left(e^{b / a}+e^{-x / a}\right)^{\nu}}=a \exp \left[b\left(\mu-\frac{\nu}{a}\right)\right] B(a \mu, \nu-a \mu), \tag{7.3}
\end{equation*}
$$

that appears as 3.314. The choice $b=0, \nu=1$ and relabelling parameters by $a=1 / q$ and $\mu=p$ yields 3.311.3:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-p x} d x}{1+e^{-q x}}=\frac{1}{q} B\left(\frac{p}{q}, 1-\frac{p}{q}\right)=\frac{\pi}{q} \operatorname{cosec}\left(\frac{\pi p}{q}\right), \tag{7.4}
\end{equation*}
$$

using the identity $B(x, 1-x)=\pi \operatorname{cosec}(\pi x)$ in the last step. This is the form given in the table.

The integral 3.311.9:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-\mu x} d x}{b+e^{-x}}=\pi b^{\mu-1} \operatorname{cosec}(\mu \pi) \tag{7.5}
\end{equation*}
$$

can be evaluated via the change of variables $t=e^{-x} / b$ and (4.2) to produce

$$
\begin{equation*}
I=b^{\mu-1} \int_{0}^{\infty} \frac{t^{\mu-1} d t}{1+t} \tag{7.6}
\end{equation*}
$$

8. Some logarithmic examples

The beta function appears in the evaluation of definite integrals involving logarithms. For example, $\mathbf{4 . 2 7 3}$ states that

$$
\begin{equation*}
\int_{u}^{v}\left(\ln \frac{x}{u}\right)^{p-1}\left(\ln \frac{v}{x}\right)^{q-1} \frac{d x}{x}=B(p, q)\left(\ln \frac{v}{u}\right)^{p+q-1} \tag{8.1}
\end{equation*}
$$

The evaluation is simple: the change of variables $x=u t$ produces, with $c=v / u$,

$$
\begin{equation*}
I=\int_{1}^{c} \ln ^{p-1} t(\ln c-\ln t)^{q-1} \frac{d t}{t} \tag{8.2}
\end{equation*}
$$

The change of variables $z=\frac{\ln t}{\ln c}$ give the result.
A second example is 4.275.1:

$$
\begin{equation*}
\int_{0}^{1}\left[(-\ln x)^{q-1}-x^{p-1}(1-x)^{q-1}\right] d x=\frac{\Gamma(q)}{\Gamma(p+q)}[\Gamma(p+q)-\Gamma(p)] \tag{8.3}
\end{equation*}
$$

that should be written as

$$
\begin{equation*}
\int_{0}^{1}\left[(-\ln x)^{q-1}-x^{p-1}(1-x)^{q-1}\right] d x=\Gamma(q)-B(p, q) \tag{8.4}
\end{equation*}
$$

The evaluation is elementary, using Euler form of the gamma function

$$
\begin{equation*}
\Gamma(q)=\int_{0}^{1}(-\ln x)^{q-1} d x \tag{8.5}
\end{equation*}
$$

9. Examples with a fake parameter

The evaluation 3.217:

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{b^{p} x^{p-1}}{(1+b x)^{p}}-\frac{(1+b x)^{p-1}}{b^{p-1} x^{p}}\right) d x=\pi \cot \pi p \tag{9.1}
\end{equation*}
$$

has the obvious parameter b. We say that this is a fake parameter in the sense that a simple scaling shows that the integral is independent of it. Indeed, the change of variables $t=b x$ shows this independence. Therefore the evaluation amounts to showing that

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{t^{p-1}}{(1+t)^{p}}-\frac{(1+t)^{p-1}}{t^{p}}\right) d t=\pi \cot \pi p \tag{9.2}
\end{equation*}
$$

To achieve this, we let $y=1 / t$ in the second integral to produce

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{0}^{\infty} \frac{t^{p-1-\epsilon} d t}{(1+t)^{p}}-\int_{0}^{\infty} \frac{t^{\epsilon-1} d t}{(1+t)^{1-p}} \tag{9.3}
\end{equation*}
$$

The integrals above evaluate to $B(p-\epsilon, \epsilon)-B(\epsilon, 1-p-\epsilon)$. Using

$$
\begin{equation*}
B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)} \text { and } \Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin (\pi a)} \tag{9.4}
\end{equation*}
$$

this reduces to

$$
\begin{equation*}
I=\lim _{\epsilon \rightarrow 0} \epsilon \Gamma(\epsilon)\left(\frac{\Gamma(p-\epsilon) \Gamma(p+\epsilon) \sin (\pi(p+\epsilon))-\Gamma^{2}(p) \sin (\pi p)}{\epsilon \Gamma(p) \Gamma(p+\epsilon) \sin (\pi(p+\epsilon))}\right) \tag{9.5}
\end{equation*}
$$

Now recall that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \epsilon \Gamma(\epsilon)=1 \tag{9.6}
\end{equation*}
$$

and reduce the previous limit to

$$
\begin{equation*}
I=\frac{1}{\Gamma^{2}(p) \sin (\pi p)} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(\Gamma(p-\epsilon) \Gamma(p+\epsilon) \sin (\pi(p+\epsilon))-\Gamma^{2}(p) \sin (\pi p)\right) \tag{9.7}
\end{equation*}
$$

Using L'Hopital's rule we find that $I=\pi \cot (\pi p)$ as required.
The example 3.218

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{2 p-1}-(a+x)^{2 p-1}}{(a+x)^{p} x^{p}} d x=\pi \cot \pi p \tag{9.8}
\end{equation*}
$$

also shows a fake parameter. The change of variable $x=a t$ reduces the integral above to

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{2 p-1}-(1+t)^{2 p-1}}{(1+t)^{p} t^{p}} d t=\pi \cot \pi p \tag{9.9}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
I=\int_{0}^{\infty}\left(\frac{t^{p-1}}{(1+t)^{p}}-\frac{(1+t)^{p-1}}{t^{p}}\right) d t \tag{9.10}
\end{equation*}
$$

The result now follows from (9.2).

10. Another type of logarithmic integral

Entry 4.251 .1 is

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} \ln x}{x+b} d x=\frac{\pi b^{a-1}}{\sin \pi a}(\ln b-\pi \cot \pi a) \tag{10.1}
\end{equation*}
$$

To check this evaluation we first scale by $x=b t$ and obtain

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{a-1} \ln x}{x+b} d x=b^{a-1} \ln b \int_{0}^{\infty} \frac{t^{a-1} d t}{1+t}+b^{a-1} \int_{0}^{\infty} \frac{t^{a-1} \ln t}{1+t} d t \tag{10.2}
\end{equation*}
$$

The first integral is simply

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{a-1} d t}{1+t}=B(a, 1-a)=\Gamma(a) \Gamma(1-a)=\frac{\pi}{\sin \pi a} \tag{10.3}
\end{equation*}
$$

The second one is evaluated as

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t^{a-1} \ln t}{1+t} d t=-\pi^{2} \frac{\cos \pi a}{\sin ^{2}(\pi a)} \tag{10.4}
\end{equation*}
$$

by differentiating (4.1) with respect to a. The evaluation follows from here.

11. A hyperbolic looking integral

The evaluation of 3.457.3:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x d x}{\left(a^{2} e^{x}+e^{-x}\right)^{\mu}}=-\frac{1}{2 a^{\mu}} B\left(\frac{\mu}{2}, \frac{\mu}{2}\right) \ln a \tag{11.1}
\end{equation*}
$$

is done as follows: write

$$
\begin{equation*}
I=\frac{1}{a^{\mu}} \int_{-\infty}^{\infty} \frac{x d x}{\left(a e^{x}+a^{-1} e^{-x}\right)^{\mu}} \tag{11.2}
\end{equation*}
$$

and let $t=a e^{x}$ to produce

$$
\begin{equation*}
I=\frac{1}{a^{\mu}} \int_{0}^{\infty} \frac{t^{\mu-1}(\ln t-\ln a) d t}{\left(1+t^{2}\right)^{\mu}} \tag{11.3}
\end{equation*}
$$

The change of variables $s=t^{2}$ yields

$$
\begin{equation*}
I=\frac{1}{4 a^{\mu}} \int_{0}^{\infty} \frac{s^{\mu / 2-1} \ln s d s}{(1+s)^{\mu}}-\frac{\ln a}{2 a^{\mu}} \int_{0}^{\infty} \frac{s^{\mu / 2-1} d s}{(1+s)^{\mu}} \tag{11.4}
\end{equation*}
$$

The first integral vanishes. This follows directly from the change $s \mapsto 1 / s$. The second integral is the beta value indicated in the formula.

In particular, the value $a=1$ yields

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{x d x}{\cosh ^{\mu} x}=0 . \tag{11.5}
\end{equation*}
$$

Differentiating with respect to μ produces

$$
\begin{equation*}
\int_{-\infty}^{\infty} x \ln \cosh x d x=0 \tag{11.6}
\end{equation*}
$$

that appears as 4.321.1 in [2].
Acknowledgments. The author wishes to thank Luis Medina for a careful reading of the manuscript. The partial support of NSF-DMS 0409968 is also acknowledged.

References

[1] G. Boros and V. Moll. Irresistible Integrals. Cambridge University Press, New York, 1st edition, 2004.
[2] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.
[3] V. Moll. The integrals in Gradshteyn and Ryzhik. Part 4: The gamma function. Scientia, 15:3746, 2007.
[4] A. Serret. Sur l'integrale $\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} d x$. Journal des Mathematiques Pures et Appliquees, 8:88-114, 1845.

Department of Mathematics, Tulane University, New Orleans, LA 70118

Departamento de Matemática
Universidad Técnica Federico Santa María Casilla 110-V,
Valparaíso, Chile
E-mail address: vhm@math.tulane.edu

