
THE BERNOULLI NUMBERS

The Bernoulli numbers are defined here by the exponential generating func-
tion
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Ideally one would like to obtain a recurrence for these numbers. The only tool
we have is the ordinary generating function, so we work with it. The relation (1)
is written as
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Dividing by t we can write the series on the left as
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How does one multiply series. In order to simplify (7) we will obtain an
expression for the product of two power series:
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The double sum on the right corresponds to summing over all point on the first
quadrant N0 ×N0. The same set of indices can be covered by lines of slope r, that
is, summing over all indices (i, j) with r = i + j fixed and then summing over all
values of r ∈ N0. This gives
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In the inner sum the value of the index r is fixed and we now eliminate the index
j, to obtain j = r − k with the range 0 ≤ k ≤ r. This gives
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The conclusion is that
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This can also be written in the following form:
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Theorem 1. The coefficient of tr in the product
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The coefficient of tr/r! in the product
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Now apply the rule in (16) to the identity (7) written in the form
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to obtain
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=
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0 if r 6= 0

1 if r = 0

Theorem 2. The Bernoulli numbers satisfy the recurrence

(19) Br = −

r−1
∑

k=0

(

r

k

)

Bk

r − k + 1
, for r > 0.

Proof. Solve the relation (18) for Br. �

Corollary 3. The Bernoulli numbers are rational numbers.

This recurrence can be used to generate the sequence of Bernoulli numbers. The
first few are

(20)
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1

2
,
1

6
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}

and it can be seen from this table that, aside from B1 = − 1

2
the Bernoulli numbers

with odd index vanish. This must not be hard to prove.

Consider the generating function

(21) G(t) =
t

et − 1

and modify it to eliminate the term corresponding to B1. That is, define

(22) G1(t) =
t

et − 1
+

t

2
.

This can be reduced to

G1(t) = t

[

1
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+
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]

(23)

=
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·
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and the second factor is

(24)
et + 1

et − 1
=

et/2 + e−t/2

et/2 − e−t/2

and its is clear that this is an odd function. Therefore, becuase of the extra factor
t/2, the function G1(t) is an even function. As such it has only even terms in its
generating function expansion.

Theorem 4. For n odd and n ≥ 3, the Bernoulli number Bn vanishes. That is

(25) B2n+1 = 0, for n ≥ 1.
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With this result, the generating function (1) for the Bernoulli numbers can be
written as

t

et − 1
=

∞
∑

k=0

Bk
tk

k!
(26)

= 1−
t

2
+

∞
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k=1

B2k
t2k

(2k)!
.

Many properties of the Bernoulli numbers are established by clever manipula-
tions of the generating function. The details given next appear in a paper by L. J.
Mordell in the American Mathematical Monthly, volume 80, 1973, pages 547-548.

Start with the identity

(27)
t

et + 1
=

t

et − 1
−

2t

e2t − 1

and expand both sides in series. The right-hand side is easy:

t
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=
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∑
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∞
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tk

k!
.

The expansion of the left-hand side is not so obvious, but the clever idea is to
multiply by a nice factor. Indeed,

(29)
t

et + 1
×

t

et − 1
=

t2

e2t − 1

and the right-hand side can be written as

(30)
t2

e2t − 1
=
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and this can be expanded as
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Now take the identity (27) and multiply it by t/(et − 1) to produce

(32)
t

2
·

2t
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)

×
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Expanding in series gives

(33)
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The product on the right hand the form in (16) with

(34) aj = Bj and bk = −(2k − 1)Bk.
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Therefore, the coefficient of tr/r! for the product on the right is given by

(35) −

r
∑

i=0

(

r

i

)

(2i − 1)BiBr−i

and on the left-hand side this coefficient is

(36) Br−12
r−2.

Therefore, if r is even, say r = 2s with s > 1 the left-hand side is 0 and we have

(37)

2s
∑

i=0

(

2s

i

)

(2i − 1)BiB2s−i = 0.

The term for i = 0 vanishes, the term for i = 1 also vansihes because of the factor
B2s−1 (this is an odd index for Bernoulli number and 2s − 1 > 1). Therefore the
sum starts at i = 2 and it must contain only even indices i, because Bi = 0 for i
odd. Let i = 2j and write (37) as

(38)

s
∑

j=1

(

2s

2j

)

(22j − 1)B2jB2s−2j = 0.

The summand for j = s is

(39) (22s − 1)B2s

and if we solve for it leads to

(40) B2s = −

s−1
∑

j=1

22j − 1

22s − 1

(
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2j

)

B2jB2s−2j .

This is a recurrence for the Bernoulli numbers that involve only even indices.

Theorem 5. The Bernoulli numbers of even index satisfy the recurrence

(41) B2s = −
1

22s − 1

s−1
∑

j=1

(22j − 1)

(

2s

2j

)

B2jB2s−2j

with initial condition B0 = 1.

Another observation coming from the list in (20) is that the sign of the non-zero
Bernoulli numbers alternate. This is easy to prove from the recurrence (41).

Corollary 6. For n ∈ N

(42) (−1)n−1B2n > 0.

Proof. Define

(43) bn = (−1)n−1B2n

and replace in (41) to obtain

(44) bn =

n−1
∑

j=1

22j − 1

22n − 1

(

2n

2j

)

bjbn−j .

The initial condition b1 = 1

6
shows that bn > 0 for all n ∈ N. �
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A second identity comes by manipulations of the generating function. The
Bernoulli numbers have been defined here by the exponential generating in (1)
by

(45) f(t) =
t

et − 1
=

∞
∑

k=0

Bk
tk

k!

The identity comes by differentiating the generating function to obtain

(46)
d

dt

t
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=

1
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−

tet

(et − 1)2

to produce

(47) f ′(t) =
f(t)

t
− f(t)−

f2(t)

t
.

This is written as

(48)
∞
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k=0
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tk−1
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=

∞
∑
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Bk
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∞
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−

∞
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(
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Now compare the coefficients of tr to produce

(49)
Br+1

r!
=

Br+1

(r + 1)!
−

Br

r!
−

1

(r + 1)!

r+1
∑

j=0

(

r + 1

j

)

BjBr+1−j

that can be written as

(50) rBr+1 = −(r + 1)Br −

r+1
∑

j=0

(

r + 1

j

)

BjBr+1−j

and this leads to

(51) (r + 2)Br+1 = −(r + 1)Br −

r
∑

j=1

(

r + 1

j

)

BjBr+1−j .

Theorem 7. The Bernoulli numbers satisfy the recurrence

(52) (r + 2)Br+1 = −(r + 1)Br −

r
∑

j=1

(

r + 1

j

)

BjBr+1−j

for r ≥ 0.

Take r = 2u− 1 to be odd, then (52) gives

(53) (2u+ 1)B2u = −

2u−1
∑

j=1

(

2u

j

)

BjB2u−j

and it follows that in the sum we should only consider even indices, to produce

Theorem 8. The Bernoulli numbers satisfy the recurrence

(54) (2u+ 1)B2u = −

u−1
∑

r=1

(

2u

2r

)

B2rB2u−2r.
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Now write

(55) br = (−1)r−1Br

and replace in (52) to produce

(56) (r + 2)br+1 = (r + 1)br +
r
∑

j=1

(

r + 1

j

)

bjbr+1−j .

This recurrence gives another proof of Corollary 6.

Now replace r + 1 by n in (52) to obtain

(57) (n+ 1)Bn = −nBn−1 −

n−1
∑

j=1

(

n

j

)

BjBn−j

that holds for n ≥ 1. Write the sum as
n−1
∑

j=1

(

n

j

)

BjBn−j =

n−2
∑

j=2

(

n

j

)

BjBn−j + 2nB1Bn−1(58)

=

n−2
∑

j=2

(

n

j

)

BjBn−j − nBn−1.

Then (57) becomes

(59) (n+ 1)Bn = −

n−2
∑

j=2

(

n

j

)

BjBn−j .

This relation is valid only for n ≥ 3. What happens for n = 1 and n = 2?


