Number Theory. Class 1

Victor H. Moll Tulane University

January 15, 2008

Notation:

- $\mathbb{N}:=\{1,\,2,\,3,\cdots\}$ the natural numbers
- $\mathbb{N}_0 := \{0, 1, 2, \cdots \}$ the cardinal numbers
- $\mathbb{Z} := \{-2, -1, 0, 1, 2, \cdots \}$ the integers

Definition

- Given $a, b \in \mathbb{Z}$, we say that a divides b
- if there is $c \in \mathbb{Z}$ such that b = ac. We write a b.

Equivalent terminology:

- b is a multiple of a
- a is a divisor of b

Notation:

- $\mathbb{N}:=\{1,\,2,\,3,\cdots\}$ the natural numbers
- $\mathbb{N}_0 := \{0, 1, 2, \cdots \}$ the cardinal numbers
- $\mathbb{Z} := \{-2, -1, 0, 1, 2, \cdots \}$ the integers

Definition

- Given $a, b \in \mathbb{Z}$, we say that a divides b
- if there is $c \in \mathbb{Z}$ such that b = ac. We write a b.
- Equivalent terminology:
- b is a multiple of a
- a is a divisor of b.

Notation:

 $\mathbb{N}:=\{1,\,2,\,3,\cdots\}$ the natural numbers

 $\mathbb{N}_0 := \{0, 1, 2, \cdots \}$ the cardinal numbers

 $\mathbb{Z}:=\{-2,\,-1,\,0,\,1,\,2,\cdots\}$ the integers

Definition

Given $a, b \in \mathbb{Z}$, we say that a divides b

if there is $c \in \mathbb{Z}$ such that b = ac. We write a b.

Equivalent terminology:

b is a multiple of a

a is a divisor of b.

$$\label{eq:Notation:} \begin{split} &\mathbb{N}:=\{1,\,2,\,3,\cdots\} \text{ the natural numbers} \\ &\mathbb{N}_0:=\{0,\,1,\,2,\,\cdots\} \text{ the cardinal numbers} \end{split}$$

 $\mathbb{Z} := \{-2, -1, 0, 1, 2, \cdots \}$ the integers

Definition

Given $a, b \in \mathbb{Z}$, we say that a divides b

if there is $c \in \mathbb{Z}$ such that b = ac. We write a | b.

Equivalent terminology:

b is a multiple of a

a is a divisor of b.

Notation:

$$\begin{split} \mathbb{N} &:= \{1, 2, 3, \cdots\} \text{ the natural numbers} \\ \mathbb{N}_0 &:= \{0, 1, 2, \cdots\} \text{ the cardinal numbers} \\ \mathbb{Z} &:= \{-2, -1, 0, 1, 2, \cdots\} \text{ the integers} \end{split}$$

Definition

Given a, b ∈ ℤ, we say that a divides b if there is c ∈ ℤ such that b = ac. We write a

Equivalent terminology:

b is a multiple of a

a is a divisor of b.

Notation:

$$\begin{split} \mathbb{N} &:= \{1, 2, 3, \cdots\} \text{ the natural numbers} \\ \mathbb{N}_0 &:= \{0, 1, 2, \cdots\} \text{ the cardinal numbers} \\ \mathbb{Z} &:= \{-2, -1, 0, 1, 2, \cdots\} \text{ the integers} \end{split}$$

Definition

Given $a, b \in \mathbb{Z}$, we say that a divides bif there is $c \in \mathbb{Z}$ such that b = ac. We write a|b.

Equivalent terminology

b is a multiple of a

a is a divisor of b.

Notation:

$$\begin{split} \mathbb{N} &:= \{1, 2, 3, \cdots\} \text{ the natural numbers} \\ \mathbb{N}_0 &:= \{0, 1, 2, \cdots\} \text{ the cardinal numbers} \\ \mathbb{Z} &:= \{-2, -1, 0, 1, 2, \cdots\} \text{ the integers} \end{split}$$

Definition

Given $a, b \in \mathbb{Z}$, we say that a divides bif there is $c \in \mathbb{Z}$ such that b = ac. We write a|b.

Equivalent terminology:

b is a multiple of *a*. *a* is a divisor of *b*.

Notation:

$$\begin{split} \mathbb{N} &:= \{1, 2, 3, \cdots\} \text{ the natural numbers} \\ \mathbb{N}_0 &:= \{0, 1, 2, \cdots\} \text{ the cardinal numbers} \\ \mathbb{Z} &:= \{-2, -1, 0, 1, 2, \cdots\} \text{ the integers} \end{split}$$

Definition

Given $a, b \in \mathbb{Z}$, we say that a divides bif there is $c \in \mathbb{Z}$ such that b = ac. We write a|b.

Equivalent terminology: *b* is a multiple of *a*.

Notation:

$$\begin{split} \mathbb{N} &:= \{1, 2, 3, \cdots\} \text{ the natural numbers} \\ \mathbb{N}_0 &:= \{0, 1, 2, \cdots\} \text{ the cardinal numbers} \\ \mathbb{Z} &:= \{-2, -1, 0, 1, 2, \cdots\} \text{ the integers} \end{split}$$

Definition

Given $a, b \in \mathbb{Z}$, we say that a divides bif there is $c \in \mathbb{Z}$ such that b = ac. We write a|b.

Equivalent terminology: b is a multiple of a. a is a divisor of b.

Question

Given a, $b \in \mathbb{Z}$, how do we decide if a divides b

Question

Given $a \in \mathbb{Z}$, how do we find all divisors of a.

Question

Given $a \in \mathbb{Z}$, how do we find some divisors of a.

Question

Given $a, b \in \mathbb{Z}$, how do we decide if a divides b.

Question

Given $a \in \mathbb{Z}$, how do we find all divisors of a.

Question

Given a $\in \mathbb{Z}$, how do we find some divisors of a.

Question

Given $a, b \in \mathbb{Z}$, how do we decide if a divides b.

Question

Given $a \in \mathbb{Z}$, how do we find all divisors of a.

Question

Given a $\in \mathbb{Z}$, how do we find some divisors of a.

Question

Given a, $b \in \mathbb{Z}$, how do we decide if a divides b.

Question

Given $a \in \mathbb{Z}$, how do we find all divisors of a.

Question

Given $a \in \mathbb{Z}$, how do we find some divisors of a.

Definition

The integer $p \in \mathbb{N}$ is called prime if its only divisors are 1 and p.

Definition

The number of divisors of $n\in\mathbb{N}$ is denoted by arphi(n).

This is the Euler phi-function or totient function

Proposition

n>1 is prime if and only if arphi(n)=2

Exercise

Prove that the function arphi is unbounded

Definition

The integer $p \in \mathbb{N}$ is called prime if its only divisors are 1 and p.

Definition

The number of divisors of $n\in\mathbb{N}$ is denoted by arphi(n)

This is the Euler phi-function or totient function

Proposition

n>1 is prime if and only if arphi(n)=2

Exercise

Prove that the function arphi is unbounded

Definition

The integer $p \in \mathbb{N}$ is called prime if its only divisors are 1 and p.

Definition

The number of divisors of $n \in \mathbb{N}$ is denoted by $\varphi(n)$.

This is the Euler phi-function or totient function

Proposition

n>1 is prime if and only if arphi(n)=2

Exercise

Prove that the function arphi is unbounded

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

The integer $p \in \mathbb{N}$ is called prime if its only divisors are 1 and p.

Definition

The number of divisors of $n \in \mathbb{N}$ is denoted by $\varphi(n)$.

This is the Euler phi-function or totient function.

n > 1 is prime if and only if $\varphi(n)$.

Exercise

Prove that the function arphi is unbounded

Definition

The integer $p \in \mathbb{N}$ is called prime if its only divisors are 1 and p.

Definition

The number of divisors of $n \in \mathbb{N}$ is denoted by $\varphi(n)$.

This is the Euler phi-function or totient function.

Proposition

n > 1 is prime if and only if $\varphi(n) = 2$.

xercise

Prove that the function arphi is unbounded

Definition

The integer $p \in \mathbb{N}$ is called prime if its only divisors are 1 and p.

Definition

The number of divisors of $n \in \mathbb{N}$ is denoted by $\varphi(n)$.

This is the Euler phi-function or totient function.

Proposition

n > 1 is prime if and only if $\varphi(n) = 2$.

Exercise

Prove that the function φ is unbounded.

l heoren

Every integer $n \in \mathbb{N}$ is divisible by a prime.

Proof.

nduction on n.

lf *n* is prime, done

If not, let b < n be one of its divisors.

Every prime divisor of *b*, also divides *n*. Done

Theorem

Every integer $n \in \mathbb{N}$ is divisible by a prime.

Proof.

Induction on *n*.

lf *n* is prime, done

f not, let b < n be one of its divisors.

Every prime divisor of *b*, also divides *n*. Done.

Theorem

Every integer $n \in \mathbb{N}$ is divisible by a prime.

Proof.

Induction on n.

lf *n* is prime, done

If not, let b < n be one of its divisors.

Every prime divisor of *b*, also divides *n*. Done.

Theorem

Every integer $n \in \mathbb{N}$ is divisible by a prime.

Proof.

Induction on n.

If *n* is prime, done.

If not, let b < n be one of its divisors.

very prime divisor of *b*, also divides *n*. Done.

Theorem

Every integer $n \in \mathbb{N}$ is divisible by a prime.

Proof.

Induction on *n*. If *n* is prime, done. If not, let b < n be one of its divisors.

Every prime divisor of *b*, also divides *n*. Done

Theorem

Every integer $n \in \mathbb{N}$ is divisible by a prime.

Proof.

Induction on *n*. If *n* is prime, done. If not, let b < n be one of its divisors. Every prime divisor of *b*, also divides *n*. Done.

I heorem

There are infinitely many primes.

Proof.

Assume $\{p_1, p_2, \cdots, p_N\}$ are all the primes.

Form $I_N := p_1 p_2 \cdots p_N + \dots$

If p_j divides T_N , then it divides $1 = T_N - p_1 p_2 \cdots p_N$.

Therefore T_N has no primes divisors. Contradiction

Theorem

There are infinitely many primes.

Proof.

Assume $\{p_1, p_2, \cdots, p_N\}$ are all the primes.

Form $T_N := p_1 p_2 \cdots p_N + \dots$

f p_j divides T_N , then it divides $1 = T_N - p_1 p_2 \cdots p_N$.

Therefore *T_N* has no primes divisors. Contradiction

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem

There are infinitely many primes.

Proof.

Assume $\{p_1, p_2, \cdots, p_N\}$ are all the primes.

 $-\text{orm } T_N := p_1 p_2 \cdots p_N + \dots$

f p_j divides T_N , then it divides $1 = T_N - p_1 p_2 \cdots p_N$.

Therefore *T_N* has no primes divisors. Contradiction

Theorem

There are infinitely many primes.

Proof.

Assume $\{p_1, p_2, \cdots, p_N\}$ are all the primes.

Form $T_N := p_1 p_2 \cdots p_N + 1$.

If p_j divides T_N , then it divides $1 = T_N - p_1 p_2 \cdots p_N$.

Therefore *T_N* has no primes divisors. Contradiction

Theorem

There are infinitely many primes.

Proof.

Assume $\{p_1, p_2, \cdots, p_N\}$ are all the primes.

Form $T_N := p_1 p_2 \cdots p_N + 1$.

If p_i divides T_N , then it divides $1 = T_N - p_1 p_2 \cdots p_N$.

Therefore T_M has no primes divisors. Contradiction

Theorem

There are infinitely many primes.

Proof.

Assume $\{p_1, p_2, \cdots, p_N\}$ are all the primes.

Form $T_N := p_1 p_2 \cdots p_N + 1$.

If p_j divides T_N , then it divides $1 = T_N - p_1 p_2 \cdots p_N$.

Therefore T_N has no primes divisors. Contradiction.

I heorem

The difference between consecutive primes can be as large as you want.

Proof.

The numbers

$n! + 2, n! + 3, n! + 4, \cdots, n! + n$

are all composite = not prime.

Open question

There are infinitely many primes p such that p + 2 is also prime.

These are called twin primes

Theorem The difference between consecutive primes can be as large as you want.

Theorem

The difference between consecutive primes can be as large as you want.

Proof.

The numbers

$n! + 2, n! + 3, n! + 4, \cdots, n! + n$

are all composite = not prime.

Open question

There are infinitely many primes p such that p + 2 is also prime.

These are called twin primes

Theorem

The difference between consecutive primes can be as large as you want.

Proof.

The numbers

$$n! + 2, n! + 3, n! + 4, \cdots, n! + n$$

are all composite = not prime.

Open question.

There are infinitely many primes ρ such that $\rho + 2$ is also prime.

These are called twin primes

Theorem

The difference between consecutive primes can be as large as you want.

Proof.

The numbers

$$n! + 2, n! + 3, n! + 4, \cdots, n! + n$$

are all composite = not prime.

Open question.

There are infinitely many primes p such that p + 2 is also prime.

These are called twin primes

Theorem

The difference between consecutive primes can be as large as you want.

Proof.

The numbers

$$n! + 2, n! + 3, n! + 4, \cdots, n! + n$$

<ロ> < 回> < 三> < 三> < 三> < 三> < 三</p>

are all composite = not prime.

Open question.

There are infinitely many primes p such that p + 2 is also prime.

These are called to

Theorem

The difference between consecutive primes can be as large as you want.

Proof.

The numbers

$$n! + 2, n! + 3, n! + 4, \cdots, n! + n$$

<ロ> < 回> < 三> < 三> < 三> < 三> < 三</p>

are all composite = not prime.

Open question.

There are infinitely many primes p such that p + 2 is also prime.

These are called to

Theorem

The difference between consecutive primes can be as large as you want.

Proof.

The numbers

$$n! + 2, n! + 3, n! + 4, \cdots, n! + n$$

are all composite = not prime.

Open question.

There are infinitely many primes p such that p + 2 is also prime.

These are called twin primes