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Notation:

N:={1, 2, 3,--- } the natural numbers
Np :={0, 1, 2, - - } the cardinal numbers
Z:={-2,-1,0,1,2,---} the integers

Definition
Given a, b € Z, we say that a divides b
if there is ¢ € Z such that b = ac. We write a|b.

Equivalent terminology:
b is a multiple of a.
a is a divisor of b.
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Question
Given a, b € 7, how do we decide if a divides b.

Question
Given a € Z, how do we find all divisors of a.

Question

Given a € Z, how do we find some divisors of a.
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Prime numbers

Definition
The integer p € N is called prime if its only divisors are 1 and p.

Definition
The number of divisors of n € N is denoted by ¢(n).

This is the Euler phi-function or totient function.

Proposition
n > 1 is prime if and only if p(n) = 2.

Exercise
Prove that the function  is unbounded.
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Prime numbers (continuation)

Theorem
Every integer n € N is divisible by a prime.

Proof.

Induction on n.

If nis prime, done.

If not, let b < n be one of its divisors.

Every prime divisor of b, also divides n. Done.
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Prime numbers (continuation)

Theorem

There are infinitely many primes.

Proof.

Assume {p1, p2, - -+, pn} are all the primes.

Form Ty := pip2---pn + 1.
If p; divides Ty, then it divides 1 = Ty — p1p2- - pn.

Therefore Ty has no primes divisors. Contradiction.
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Prime gaps

Theorem
The difference between consecutive primes can be as large as you
want.
Proof.
The numbers
n+2 n4+3 n+4, --- nl+n
are all composite = not prime. O

Open question.
There are infinitely many primes p such that p + 2 is also prime.

These are called



