PROOF OF FORMULA 3.234.2

$$
\int_{0}^{1}\left(\frac{x^{q-1}}{1+a x}+\frac{x^{-q}}{a+x}\right) d x=\frac{\pi}{a^{q} \sin \pi q}
$$

The change of variables $t=a x$ in the first integral and $x=a t$ in the second one show that

$$
\int_{0}^{1}\left(\frac{x^{q-1}}{1+a x}+\frac{x^{-q}}{a+x}\right) d x=a^{-q}\left(\int_{0}^{a} \frac{t^{q-1} d t}{1+t}+\int_{0}^{1 / a} \frac{t^{-q} d t}{1+t}\right)
$$

Differentiation with respect to the parameter a shows that the sum of the two integrals is independent of a. Therefore

$$
\int_{0}^{1}\left(\frac{x^{q-1}}{1+a x}+\frac{x^{-q}}{a+x}\right) d x=a^{-q} \int_{0}^{1} \frac{t^{q-1}+t^{-q}}{1+t} d t
$$

This integral is $\pi / \sin \pi q$ as shown in formula 3.231.2.

