PROOF OF FORMULA 3.241.1

$$
\int_{0}^{1} \frac{x^{\mu-1} d x}{1+x^{p}}=\frac{1}{p} \beta\left(\frac{\mu}{p}\right)
$$

The β function in the answer is the incomplete beta function defined by

$$
\beta(a)=\int_{0}^{1} \frac{t^{a-1} d t}{1+t}
$$

The change of variables $t=x^{p}$ shows that the requested evaluation is

$$
\int_{0}^{1} \frac{x^{\mu-1} d x}{1+x^{p}}=\frac{1}{p} \int_{0}^{1} \frac{t^{\mu / p-1} d x}{1+t}=\frac{1}{p} \beta\left(\frac{\mu}{p}\right)
$$

