PROOF OF FORMULA 3.248.2

$$
\int_{0}^{1} \frac{x^{2 n+1} d x}{\sqrt{1-x^{2}}}=\frac{\sqrt{\pi} n!}{2 \Gamma(n+3 / 2)}=\frac{(2 n)!!}{(2 n+1)!!}
$$

Let $t=x^{2}$ to obtain

$$
\int_{0}^{1} \frac{x^{2 n+1} d x}{\sqrt{1-x^{2}}}=\frac{1}{2} \int_{0}^{1} t^{n}(1-t)^{-1 / 2} d t
$$

Now use the representation

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t
$$

with $x=n+1$ and $y=1 / 2$ to obtain

$$
\int_{0}^{1} \frac{x^{2 n+1} d x}{\sqrt{1-x^{2}}}=\frac{1}{2} B(n+1,1 / 2)=\frac{\Gamma(n+1) \Gamma(1 / 2)}{2 \Gamma(n+3 / 2)}
$$

where we have used

$$
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

The value $\Gamma(1 / 2)=\sqrt{\pi}$ and the functional equation

$$
\Gamma(x+1)=x \Gamma(x)
$$

give the identity

$$
\Gamma\left(n+\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2^{n+1}}(2 n+1)!!
$$

The relation

$$
(2 n)!!=2^{n} n!
$$

is useful in the simplifications.

