PROOF OF FORMULA 3.252 .3

$$
\int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{n+3 / 2}}=\frac{(-2)^{n}}{(2 n+1)!!} \frac{\partial^{n}}{\partial c^{n}}\left[\frac{1}{\sqrt{c}(\sqrt{a c}+b)}\right]
$$

The case $n=0$ is solved by the change of variables $u=a(x+b / a) /\left(a c-b^{2}\right)^{1 / 2}$ to obtain

$$
\int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{3 / 2}}=\frac{\sqrt{a}}{a c-b^{2}} \int_{a^{*}}^{\infty} \frac{d u}{\left(u^{2}+1\right)^{3 / 2}},
$$

where $a^{*}=b / \sqrt{a c-b^{2}}$. The change of variables $u=\tan \phi$ yields

$$
\int_{0}^{\infty} \frac{d x}{\left(a x^{2}+2 b x+c\right)^{3 / 2}}=\frac{1}{\sqrt{c}(\sqrt{a c}+b)}
$$

The formula for $n>0$ comes by differentiation with respect to c.

