PROOF OF FORMULA 3.252.3

$$\int_0^\infty \frac{dx}{(ax^2 + 2bx + c)^{n+3/2}} = \frac{(-2)^n}{(2n+1)!!} \frac{\partial^n}{\partial c^n} \left[\frac{1}{\sqrt{c} (\sqrt{ac} + b)} \right]$$

The case n = 0 is solved by the change of variables $u = a(x + b/a)/(ac - b^2)^{1/2}$ to obtain

$$\int_0^\infty \frac{dx}{(ax^2 + 2bx + c)^{3/2}} = \frac{\sqrt{a}}{ac - b^2} \int_{a^*}^\infty \frac{du}{(u^2 + 1)^{3/2}},$$

where $a^* = b/\sqrt{ac - b^2}$. The change of variables $u = \tan \phi$ yields

$$\int_0^\infty \frac{dx}{(ax^2 + 2bx + c)^{3/2}} = \frac{1}{\sqrt{c}\left(\sqrt{ac} + b\right)}.$$

The formula for n > 0 comes by differentiation with respect to c.