The original formula is

$$
\int_{u}^{\infty} e^{-x^{2} / 4 \beta-\gamma x} d x=\sqrt{\pi \beta} e^{\beta \gamma^{2}}\left[1-\operatorname{erf}\left(\frac{u}{2 \sqrt{\beta}}+\sqrt{\beta} \gamma\right)\right]
$$

The change of variables $x=2 \sqrt{\beta} t$ and replacing $u / 2 \sqrt{\beta}$ by u and $\sqrt{\beta} \gamma$ by a (and going back to x as the integration variable) gives the new formula

$$
\int_{u}^{\infty} e^{-x^{2}-2 a x} d x=\frac{\sqrt{\pi}}{2} e^{a^{2}}[1-\operatorname{erf}(u+a)]
$$

