$$
\int_{0}^{\infty}\left[\frac{a \exp \left(-c e^{a x}\right)}{1-e^{-a x}}-\frac{b \exp \left(-c e^{b x}\right)}{1-e^{-b x}}\right] d x=\frac{\ln b-\ln a}{e^{c}}
$$

Frullani's formula states that

$$
\int_{0}^{\infty} \frac{F(a t)-F(b t)}{t} d t=(F(\infty)-F(0)) \ln \frac{a}{b}
$$

The present example is obtained by choosing $F(t)=t \exp (-c e-t) /\left(1-e^{-t}\right)$ and observing that $F(\infty)=0$ and $F(0)=e^{-c}$.

