PROOF OF FORMULA 3.382.4

$$
\int_{0}^{\infty}(x+b)^{-\nu} e^{-\mu x} d x=\frac{e^{b \mu}}{\mu^{\nu+1}} \Gamma(\nu+1, b \mu)
$$

The incomplete gamma function appearing in the answer is defined by

$$
\Gamma(\alpha, x)=\int_{x}^{\infty} t^{\alpha-1} e^{-t} d t
$$

This appears as 8.350.2.
The change of variables $t=x+b$ gives

$$
\int_{0}^{\infty}(x+b)^{-\nu} e^{-\mu x} d x=e^{b \mu} \int_{b}^{\infty} t^{\nu} e^{-m u t} d t
$$

The result is now obtained by letting $s=\mu t$.

