PROOF OF FORMULA 3.411.12

$$
\int_{0}^{\infty} \frac{x e^{-2 n x}}{1+e^{x}} d x=\frac{\pi^{2}}{12}+\sum_{k=1}^{2 n} \frac{(-1)^{k}}{k^{2}}
$$

Formula 3.411 .8 states that

$$
\int_{0}^{\infty} \frac{x^{m-1} e^{-p x} d x}{1+e^{x}}=(m-1)!\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(k+p)^{m}}
$$

The special case $m=2$ and $p=2 n$ yields

$$
\int_{0}^{\infty} \frac{x e^{-2 n x} d x}{1+e^{x}}=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(k+2 n)^{2}}
$$

The series simplifies as follows

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(k+2 n)^{2}}=\sum_{j=2 n+1}^{\infty} \frac{(-1)^{j-1}}{j^{2}}=\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j^{2}}-\sum_{j=1}^{2 n} \frac{(-1)^{j-1}}{j^{2}}
$$

The result now follows from

$$
\sum_{j=1}^{\infty} \frac{(-1)^{j-1}}{j^{2}}=\frac{\pi^{2}}{12}
$$

