The original formula is

$$
\int_{0}^{\infty} \frac{x^{2 n-1} d x}{e^{p x}-1}=(-1)^{n-1}\left(\frac{2 \pi}{p}\right)^{2 n} \frac{B_{2 n}}{4 n}
$$

The change of variables $t=p x$ and using $\left|B_{2 n}\right|=(-1)^{n-1} B_{2 n}$ gives the new formula (going back to x as the variable of integration)

$$
\int_{0}^{\infty} \frac{x^{2 n-1} d x}{e^{x}-1}=\frac{(2 \pi)^{2 n}\left|B_{2 n}\right|}{4 n}
$$

