PROOF OF FORMULA 3.411.30

$$
\int_{-\infty}^{\infty} \frac{e^{p x}-e^{q x}}{1-e^{r x}} \frac{d x}{x}=\ln \left[\sin \frac{\pi p}{r} \operatorname{cosec} \frac{\pi q}{r}\right]
$$

Denote the integral by $I(p)$ and differentiate with respect to p to obtain

$$
I^{\prime}(p)=\int_{-\infty}^{\infty} \frac{e^{p x} d x}{1-e^{-r x}}=\frac{1}{r} \int_{-\infty}^{\infty} \frac{e^{-p t / r} d t}{1-e^{-t}}
$$

after the change of variables $t=-r x$. This last (singular) integral appears as entry 3.311 .8 and it yields

$$
I^{\prime}(p)=\frac{\pi}{r} \cot \frac{\pi p}{r}
$$

Integrate back and use $I(q)=0$ to obtain the result.

