PROOF OF FORMULA 3.461.3

$$
\int_{0}^{\infty} x^{2 n+1} e^{-p x^{2}} d x=\frac{n!}{2 p^{n+1}}
$$

Let $t=\sqrt{p} x$ to obtain

$$
\int_{0}^{\infty} x^{2 n+1} e^{-p x^{2}} d x=\frac{1}{p^{n+1}} \int_{0}^{\infty} t^{2 n+1} e^{-t} d t
$$

The change of variables $s=t^{2}$ gives

$$
\int_{0}^{\infty} t^{2 n+1} e^{-t} d t=\frac{1}{2} \int_{0}^{\infty} s^{n} e^{-s} d s
$$

The last integral is $\Gamma(n+1)=n!$, and the formula has been established.

