PROOF OF FORMULA 3.472.4

$$
\int_{0}^{\infty} \exp \left[-\frac{1}{2 a}\left(x^{2}+\frac{1}{x^{2}}\right)\right] \frac{d x}{x^{4}}=\sqrt{\frac{a \pi}{2}}(1+a) e^{-1 / a}
$$

Formula 3.325 states that

$$
\int_{0}^{\infty} e^{-a x^{2}-b / x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2 \sqrt{a b}}
$$

Differentiate twice with respect to the parameter a to obtain

$$
\int_{0}^{\infty} e^{-a x^{2}-b / x^{2}} \frac{d x}{x^{4}}=\frac{\sqrt{\pi}}{2 a} e^{-2 \sqrt{a b}}\left(\sqrt{b}+\frac{1}{2 \sqrt{a}}\right)
$$

The result follows by putting $a=b$ and then replacing a by $1 / 2 a$.

