The original formula is

$$
\int_{0}^{\infty} \frac{\sinh ^{2} a x}{1-e^{p x}} \cdot \frac{d x}{x}=\frac{1}{4} \ln \left(\frac{p}{2 a \pi} \sin \frac{2 a \pi}{p}\right)
$$

The change of variables $t=p x$ and replacing a / p by a gives the new form (where we have replaced t by x to be consistent with the table and rewrite the integrand so it is positive)

$$
\int_{0}^{\infty} \frac{\sinh ^{2} a x}{e^{x}-1} \cdot \frac{d x}{x}=\frac{1}{4} \ln \left(\frac{2 \pi a}{\sin 2 \pi a}\right)
$$

