NEW FORMULA 3.747.3

The original formula is

$$
\int_{0}^{\infty} \frac{x d x}{\left(x^{2}+b^{2}\right) \sin (a x)}=\frac{\pi}{2 \sinh (a b)}
$$

the change of variable $t=a x$ and replacing $a b$ by a (and going back to x as the integration variable) gives the new formula

$$
\int_{0}^{\infty} \frac{x d x}{\left(x^{2}+a^{2}\right) \sin x}=\frac{\pi}{2 \sinh a}
$$

