The original formula is

$$
\int_{0}^{\infty} \frac{\sin ^{2}(a x) d x}{x^{2}\left(b^{2}+x^{2}\right)}=\frac{\pi}{4 b^{2}}\left[2 a-\frac{1-e^{-2 a b}}{b}\right]
$$

The change of variables $x=b t$ and replacing $a b$ by a (and going back to x as the integration variable) gives the new formula

$$
\int_{0}^{\infty} \frac{\sin ^{2}(a x) d x}{x^{2}\left(1+x^{2}\right)}=\frac{\pi}{4}\left[2 a-\left(1-e^{-2 a}\right)\right]
$$

