PROOF OF FORMULA 4.226.6

$$
\int_{0}^{\pi / 2} \ln \left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right) d x=\frac{1}{2} \int_{0}^{\pi} \ln \left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right) d x=\pi \ln \left(\frac{a+b}{2}\right)
$$

The integral satisfies the first order partial differential equation

$$
a \frac{\partial f}{\partial a}+b \frac{\partial f}{\partial b}=\pi
$$

It follows that $f(a, b)=h(t)$, with $t=a+b$. Repalcing in the differential equation gives $t h^{\prime}(t)=\pi$. Therefore, $h(t)=\pi \ln t+C$. The constant of integration is found to be $-\pi \ln 2$ from entry 4.224 .6

$$
\int_{0}^{\pi / 2} \ln \cos x d x=-\frac{\pi}{2} \ln 2
$$

This completes the proof.

