PROOF OF FORMULA 4.281.3

$$
\int_{0}^{1} \frac{x^{p-1} d x}{q \pm \ln x}= \pm e^{\mp p q} \operatorname{Ei}(\pm p q)
$$

We compute the case of + sign, the other one is similar. The change of variables $u=q+\ln x$ yields

$$
\int_{0}^{1} \frac{x^{p-1} d x}{q \pm \ln x}=e^{-p q} \int_{-\infty}^{q} \frac{e^{u p}}{u} d u
$$

The result now follows from the change of variables $t=u p$ and the definition of the exponential integral

$$
\operatorname{Ei}(x)=\int_{-\infty}^{x} \frac{e^{t}}{t} d t
$$

