PROOF OF FORMULA 4.281.5

$$
\int_{0}^{1}\left(\frac{x^{p-1}}{\ln x}+\frac{x^{q-1}}{1-x}\right) d x=\ln p-\psi(q)
$$

Write this as

$$
\int_{0}^{1}\left(\frac{x^{p-1}}{\ln x}+\frac{x^{q-1}}{1-x}\right) d x=\int_{0}^{1}\left(\frac{1}{\ln x}+\frac{x^{q-1}}{1-x}\right) d x+\int_{0}^{1} \frac{x^{p-1}-1}{\ln x} d x
$$

The first integral is $-\psi(q)$ according to entry 4.281.4 and the second one is $\ln p$ according to 4.267.8.

