PROOF OF FORMULA 4.291.9

$$
\int_{0}^{\infty} \frac{\ln (1+x)}{1+x^{2}} d x=\frac{\pi}{4} \ln 2+G
$$

Split the integral at $t=1$ and in the part $t \geq 1$ change t by $1 / t$ to obtain

$$
\int_{0}^{\infty} \frac{\ln (1+x)}{1+x^{2}} d x=2 \int_{0}^{1} \frac{\ln (1+t)}{1+t^{2}} d x-\int_{0}^{1} \frac{\ln t}{1+t^{2}} d t
$$

The first integral is in entry 4.291 .8 with value $\frac{1}{8} \pi \ln 2$. The second one appears as the case $a=1$ in entry 4.231 .11 with value $-G$.

