NEW FORMULA 4.295.1

The original formula is

$$
\int_{0}^{\infty} \frac{\ln \left(\mu x^{2}+\beta\right)}{\gamma+x^{2}} d x=\frac{\pi}{\sqrt{\gamma}} \ln (\sqrt{\mu \gamma}+\sqrt{\beta})
$$

Let $x=\sqrt{\gamma} t$ and replace $\mu \gamma$ by $a$ and $\beta$ by $b$ to obtain (after writing $x$ for the new variable of integration)

$$
\int_{0}^{\infty} \frac{\ln \left(a x^{2}+b\right)}{1+x^{2}} d x=\pi \ln (\sqrt{a}+\sqrt{b})
$$

