PROOF OF FORMULA 4.335.2

$$
\int_{0}^{\infty} e^{-x^{2}} \ln ^{2} x d x=\frac{\sqrt{\pi}}{16}\left(2(\gamma+2 \ln 2)^{2}+\pi^{2}\right)
$$

Start with the identity

$$
\int_{0}^{\infty} x^{a} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} t^{(a-1) / 2} e^{-t} d t=\frac{1}{2} \Gamma\left(\frac{a+1}{2}\right) .
$$

Differentiate twice with respect to a to obtain

$$
\int_{0}^{\infty} x^{a} e^{-x^{2}} \ln ^{2} x d x=\frac{1}{8} \Gamma\left(\frac{a+1}{2}\right)\left[\psi^{2}\left(\frac{a+1}{2}\right)+\psi^{\prime}\left(\frac{a+1}{2}\right)\right] .
$$

Now put $a=0$ and use

$$
\psi(1 / 2)=-\gamma-2 \ln 2 \text { and } \psi^{\prime}(1 / 2)=\pi^{2} / 2
$$

(the last value appears as entry 8.366) to obtain the result.

