PROOF OF FORMULA 4.355.4

$$
\int_{0}^{\infty}\left(2 \mu x^{2}-2 n-1\right) x^{2 n} e^{-\mu x^{2}} \ln x d x=\frac{(2 n-1)!!}{2(2 \mu)^{n}} \sqrt{\frac{\pi}{\mu}}
$$

In the proof of entry 4.355 .1 the formula

$$
\int_{0}^{\infty} x^{m} e^{-s x^{b}} \ln x d x=\frac{\Gamma(r)}{b^{2} s^{r}}[\psi(r)-\ln s]
$$

was established. Here $r=(m+1) / b$. Using this in the current problem, the integral

$$
\int_{0}^{\infty}\left(2 \mu x^{2}-2 n-1\right) x^{2 n} e^{-\mu x^{2}} \ln x d x
$$

is reduced to

$$
\begin{gathered}
2 \mu \int_{0}^{\infty} x^{2 n+2} e^{-\mu x^{2}} \ln x d x-(2 n+1) \mu \int_{0}^{\infty} x^{2 n} e^{-\mu x^{2}} \ln x d x \\
\frac{2 \mu \Gamma(n+3 / 2)}{4 \mu^{n+3 / 2}}\left[\psi\left(n+\frac{3}{2}\right)-\ln \mu\right]-\frac{(2 n+1) \mu \Gamma(n+1 / 2)}{4 \mu^{n+1 / 2}}\left[\psi\left(n+\frac{1}{2}\right)-\ln \mu\right] .
\end{gathered}
$$

This reduces to the form stated here using

$$
\Gamma\left(n+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{n}}(2 n-1)!!
$$

given in entry 8.338.1.

